\(\left(4,5x-\frac{3}{4}.5\frac{1}{3}\right).\frac{1}{12}+\frac{1}{2}x=\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a (\(\frac{9}{2}\)x - \(\frac{16}{3}\)).\(\frac{1}{12}\) + \(\frac{1}{2}\)x=\(\frac{3}{2}\)
\(\frac{9}{2}\)x . \(\frac{1}{12}\) - \(\frac{16}{3}\) . \(\frac{1}{12}\) + \(\frac{1}{2}\)x=\(\frac{3}{2}\)
( \(\frac{9}{2}\)x . \(\frac{1}{12}\) + \(\frac{1}{2}\)x) - \(\frac{16}{3}\) . \(\frac{1}{12}\) = \(\frac{3}{2}\)
x. ( \(\frac{9}{2}\) . \(\frac{1}{12}\) +\(\frac{1}{2}\)) - \(\frac{4}{9}\) = \(\frac{3}{2}\)
x.\(\frac{7}{8}\) = \(\frac{3}{2}\) + \(\frac{4}{9}\) = \(\frac{35}{18}\)
x= \(\frac{35}{18}\) : \(\frac{7}{8}\) = \(\frac{20}{9}\) Vậy x=\(\frac{20}{9}\)
b 60%+2/3x=684
3/5x+2/3x=684
x(3/5+ 2/3) = 684
x. 19/15 = 684
x=540. Vậy x=540
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
Câu 1:
a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)
\(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)
\(=\frac{1}{2}-\frac{4}{3}\)
\(=-\frac{5}{6}\)
b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=7+\frac{1}{12}+3-\frac{1}{12}-5\)
\(=5\)
Câu 2:
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)
\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
Vậy -1\(\le\)x<7