\(B=\dfrac{-4}{12}+\dfrac{18}{45}+\dfrac{-6}{9}+\dfrac{-21}{35}+\dfrac{6}{30}\)
Giusp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{-4}{12}+\dfrac{18}{45}+\dfrac{-6}{9}+\dfrac{21}{35}+\dfrac{6}{30}\)
\(=\dfrac{-1}{3}+\dfrac{-2}{3}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{6}{30}\)
\(=-1+1+\dfrac{1}{5}\)
\(=\dfrac{1}{5}\)
a) A= \(\dfrac{4}{7}+\dfrac{3}{4}+\dfrac{2}{7}+\dfrac{5}{4}+\dfrac{1}{7}\)
= \(\left(\dfrac{4}{7}+\dfrac{2}{7}+\dfrac{1}{7}\right)+\left(\dfrac{3}{4}+\dfrac{5}{4}\right)\)
= \(\dfrac{4+2+1}{7}+\dfrac{3+5}{4}\)
= \(\dfrac{7}{7}+\dfrac{8}{4}\) = \(1+2\) = \(3\)
b) B= \(\dfrac{-4}{12}+\dfrac{18}{45}+\dfrac{-6}{9}+\dfrac{-21}{35}+\dfrac{6}{30}\)
= \(\dfrac{-1}{3}+\dfrac{2}{5}+\dfrac{-2}{3}+\dfrac{-3}{5}+\dfrac{1}{5}\)
= \(\left(\dfrac{-1}{3}+\dfrac{-2}{3}\right)+\left(\dfrac{2}{5}+\dfrac{-3}{5}+\dfrac{1}{5}\right)\)
= \(\dfrac{\left(-1\right)+\left(-2\right)}{3}+\dfrac{2+\left(-3\right)+1}{5}\)
= \(\dfrac{-3}{3}+\dfrac{0}{5}\) = \(-1+0\) = \(-1\)
\(\dfrac{7}{21}+\dfrac{-9}{36}=\dfrac{1}{3}+\dfrac{-1}{4}=\dfrac{4}{12}+\dfrac{-3}{12}=\dfrac{1}{12}\)
\(\dfrac{-12}{18}+\dfrac{-21}{35}=\dfrac{-2}{3}+\dfrac{-3}{5}=\dfrac{-10}{15}+\dfrac{-9}{15}=\dfrac{-19}{15}\)
\(\dfrac{-18}{14}+\dfrac{15}{-21}=\dfrac{-9}{7}+\dfrac{-5}{7}=\dfrac{-14}{7}=-2\)
\(\dfrac{3}{21}+\dfrac{-6}{42}=\dfrac{1}{7}+\dfrac{-1}{7}=0\)
a. \(\dfrac{\sqrt{2}.\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7}.\left(\sqrt{3}+\sqrt{5}\right)}=\dfrac{\sqrt{2}}{\sqrt{7}}=\sqrt{\dfrac{2}{7}}\)
d. \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{5-2\sqrt{5}+1}}{\sqrt{5}-1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-1}=\sqrt{5}-1\)
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
d: \(D=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\)
\(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{3\left(x+y\right)}{2}\)
\(=\dfrac{3}{x-y}\)
\(E=\dfrac{-1}{3}-\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{3}{5}+\dfrac{1}{5}=-1\)