K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DE=DB+BC+CE

nên DE=AB+AC+BC

10 tháng 2 2022

Vì tam giác ABC cân tại A

⇒ \(AB=AC\)

mà \(\left\{{}\begin{matrix}BD=AB\\AC=CE\end{matrix}\right.\)

\(\Rightarrow AB=AC=BD=CE\)

Ta có:

\(DE=BD+BC+CE\)

\(=AB+AC+BC\)(đpcm)

11 tháng 2 2022

Ta có:\(DE=BD+BC+CE=AB+BC+AC\)

11 tháng 2 2022

undefined

Bài 8:

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó:ΔABD=ΔACE

Suy ra: AD=AE

b: ta có: ΔABD=ΔACE

nên \(\widehat{ADB}=\widehat{AEC}\)

1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có 

AB=AD(gt)

AC=AE(gt)

Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)

Suy ra: BC=DE(hai cạnh tương ứng)

2) Xét ΔABD có AB=AD(gt)

nên ΔABD cân tại A(Định nghĩa tam giác cân)

Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)

nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)