K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC)

=> AH là đường trung tuyến (TC tam giác cân)

=> H à TĐ của BC 

=> BH = HC 

Xét tam giác AHB và tam giác AHC:

BH = HC (cmt)

^AHB = ^AHC (90o)

AH chung

=> tam giác AHB = tam giác AHC (ch - cgv)

b) Ta có: HA = HD (gt) => H là TĐ của AD

Xét tam giác ACD có:

CH là đường cao (CH vuông góc AD)

CH là trung tuyến (H là TĐ của AD)

=> tam giác ACD cân tại C

c) Xét tam giác ACD cân tại A có:

AD > AC + CD (Bất đẳng thức trong tam giác)

=> \(\dfrac{1}{2}AD=\dfrac{1}{2}\left(AC+CD\right)\)

Mà  \(HA=\dfrac{1}{2}AD\) (H là TĐ của AD)

=> \(HA>\dfrac{1}{2}\left(AC+CD\right)\) (ĐPCM)

Bạn có thể giúp mik thêm 1 cái nx là vẽ hình đc ko bạn?

12 tháng 2 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta AHB\)vuông và \(\Delta AHC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)

Cạnh AH chung

=> \(\Delta AHB\)vuông = \(\Delta AHC\)vuông (cạnh huyền - cạnh góc vuông) (đpcm)

b/ Ta có \(\Delta AHB\)\(\Delta AHC\) (cm câu a) => HB = HC (hai cạnh tương ứng) => H là trung điểm của BC

=> BH = \(\frac{BC}{2}\)\(\frac{8}{2}\)= 4 (cm)

Ta có \(\Delta AHB\)vuông tại H => AH2 + HB2 = AB2 (định lí Pitago)

=> AH2 = AB2 - HB2

=> AH2 = 52 - 42

=> AH2 = 25 - 16

=> AH2 = 9

=> AH = \(\sqrt{9}\)

=> AH = 3

c/ \(\Delta AHB\)vuông tại H và \(\Delta MHB\)vuông tại H có: AH = MH (gt)

Cạnh HB chung

=> \(\Delta AHB\)vuông = \(\Delta MHB\)vuông (cạnh huyền - cạnh góc vuông) => AB = MB (hai cạnh tương ứng)

=> \(\Delta ABM\)cân tại B (đpcm)

d/ Ta có \(\Delta AHB\)\(\Delta AHC\)(cm câu a) => \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng) (1)

Ta có \(\Delta AHB\)\(\Delta MHB\)(cm câu c) => \(\widehat{M}=\widehat{BAH}\)(hai góc tương ứng) (2)

Từ (1) và (2) => \(\widehat{M}=\widehat{CAH}\)ở vị trí so le trong => BM // AC (đpcm)

26 tháng 6 2020

A B C H M

a ) Ta có ΔABC cân tại A .

\(\Rightarrow\) AB = AC

Có AH là đường cao

\(\Rightarrow\) AH đồng thời là trung tuyến

\(\Rightarrow\) H là trung điểm của BC

Xét ΔAHB và ΔAHC có :

AB = AC

Góc AHB = Góc AHC = 90 

       BH = HC

\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )

b ) Xét ΔAHB vuông tại H có .

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)

c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .

\(\Rightarrow\) ΔABM cân tại B

d ) Ta có : BAM cân tại B 

\(\Rightarrow\) Góc BAM = Góc BMA

Xét ΔBAC cân tại A có HA là trung tuyến

\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .

\(\Rightarrow\) Góc BAH = Góc CAH

\(\Rightarrow\) Góc BMA = Góc HAC

Mà 2 góc này ở vị trí so le trong của BM và AC .

\(\Rightarrow\) BM // AC

26 tháng 6 2020

A B C H M

a) ( Cái này có khá nhiều cách chứng minh nhé . )

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân )

AH chung 

=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )

b) => HB = HC ( hai cạnh tương ứng )

Mà BC = 8cm

=> HB = HC = BC/2 = 8/2 = 4cm

Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :

AB2 = AH2 + HB2

52 = AH2 + 42

=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)

c) HM là tia đối của HA

=> ^AHB + ^BHM = 1800

=> 900 + ^BHM = 1800

=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H

Xét tam giác vuông AHB và tam giác vuông BHM ta có :

HM = HA ( gt )

 ^BHM = ^AHB ( cmt ) 

HB chung

=> Tam giác AHB = tam giác BHM ( c.g.c )

=> BM = BA ( hai cạnh tương ứng )

Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B

d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a) 

Tam giác AHB = Tam giác BHM ( theo ý c) 

Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM 

=> ^HBM = ^ACH ( hai góc tương ứng )

mà hai góc ở vị trí so le trong 

=> BM // AC ( đpcm )

( Hình có thể k đc đẹp lắm )

21 tháng 12 2021

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

Do đó: ΔABH=ΔACH

1 tháng 4 2022

a,Ta có: tam giác ABC cân tại A
           =>AB=AC
  Xét tam giác AHB và tam giác AHC có:
         góc AHB=góc AHC=90 độ
        AB=AC(cmt)
        AH chung
=>tam giác AHB=tam giác AHC(cạnh huyền-cạnh góc vuông)
=>góc BAH=góc CAH(2 góc tương ứng)
=>AH là tia phân giác của góc BAC
 (bít lm mỗi câu a, thông cảm)

2 tháng 4 2022

đây ko phải là toán lớp 6 .-.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

DO đó; ΔAMH=ΔANH

Suy ra: AM=AN và HM=HN

=>AH là đường trung trực của MN

hay AH\(\perp\)MN

24 tháng 1 2020

A B C K I M N H

  GT  

 △ABC cân tại A. AB = AC = 13cm. BC = 24cm.

 AH ⊥ BC (H \in  BC). BK = CI. BM ⊥ AK. CN ⊥ AI

  KL

 a, △AHC = △AHB

 b, AH = ?

 c, △ABK = △ACI

 d, △MBK = △NCI

Bài giải:

a, Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB

Xét △AHC vuông tại H và △AHB vuông tại H

Có: AH là cạnh hcung

       AC = AB (cmt)

=> △AHC = △AHB (ch-cgv)

b, Ta có: BC = BH + HC

Mà BC = 24 cm

=> BH + HC = 24 cm

Mà HC = HB (△AHC = △AHB)

=> HC = HB = 24 : 2 = 12 (cm)

Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 + 122 = 132 => AH2 = 25 => AH = 5

c, Ta có: ABK + ABC = 180o (2 góc kề bù)

ACI + ACB = 180o (2 góc kề bù)

Mà ABC = ACB (cmt)

=> ABK = ACI

Xét △ABK và △ACI 

Có: AB = AC (cmt)

    ABK = ACI (cmt)

      BK = CI (gt)

=> △ABK = △ACI (c.g.c)

d, Xét △MBK vuông tại M và △NCI vuông tại N

Có: BK = CI (gt)

    MKB = NIC (△ABK = △ACI)

=> △MBK = △NCI (ch-gn)