K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+.........+\frac{1}{99.100}\right)\)

\(=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{99}-\frac{1}{100}\right)\)

\(=5\left(1-\frac{1}{100}\right)\)

\(=5.\frac{99}{100}\)

\(=\frac{99}{20}\)

22 tháng 3 2023

\(=5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(=5.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=5\left(1-\dfrac{1}{100}\right)\)

\(=5.\dfrac{99}{100}=\dfrac{99}{20}\)

làm đúng r đó :>

tui biết làm sợ sai :/

18 tháng 4 2017

A =\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3\cdot4}+...+\frac{5}{99.100}\)

A = 5 x (\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\) )

A = 5 x \(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

A = 5 x \(\left(1-\frac{1}{100}\right)\)

A = 5 x \(\frac{99}{100}\)

A = \(\frac{495}{100}\)

A= \(\frac{99}{20}\)

18 tháng 4 2017

Ta co : A =5.(1/1.2+1/2.3+1/3.4+....+1/99.100)

             A= 5.(1-1/2+1/2-1/3+1/3-1/4+.....+1/99-1/100)

Rut gon tung so ta co :A=5.(1-1/100)

                                         A=5.99/100

                                          A=1.99/50=99/50

13 tháng 5 2016

C=5/1.2+5/2.3+5/3.4+...+5/99.100

C=5.(1/1.2+1/2.3+1/3.4+...+1/99.100)

C=5.(1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)

C=5.(1-1/100)

C=5.(100/100-1/100)

C=5.9/100

C=9/20

Chúc bạn học tốt nha, Lan Anh

13 tháng 5 2016

\(C=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+....+\frac{5}{99.100}\)

\(C=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\right)\)

\(C=5.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=5.\left(\frac{1}{1}-\frac{1}{100}\right)=5.\frac{99}{100}=\frac{99}{20}\)

Vậy C=99/20

24 tháng 6 2015

Cai phan 1+3+5+...+99 chac em biet lam roi phai ko? Con 3/1.2+3/2.3+3/3.4+...+3/99.100 thi em cu tach lam sao cho tro thanh dang ban dau thi lam . Anh phai nghi roi !~ Neu chieu anh ranh ranh thi len giai tiep . BYE BYE

24 tháng 6 2015

\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}+4x=1+3+5+...+99\)

\(3\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)+4x=\left(1+99\right)+\left(3+97\right)+\left(5+95\right)+...+\left(49+51\right)\)\(3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)+4x=100+100+100+...+100\)\(3\left(1-\frac{1}{100}\right)+4x=100.25\)

\(3.\frac{99}{100}+4x=2500\)

\(\frac{297}{100}+4x=2500\)

\(4x=2500-\frac{297}{100}\)

\(4x=2500-2,97\)

\(4x=2497,03\)

\(x=624,2575\)

\(x=2497,03:4\)

29 tháng 6 2019

TL:

a)\(2+4+6+...+2000=\frac{\left(2+2000\right).\left[\left(2000-2\right):2+1\right]}{2}\) 

\(=1001000\)

Câu b tương tự nha bạn:)

c) Đặt 1.2+2.3+....+99.100 =A

\(3A=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\) 

\(3A=1.2.3+2.3.4-1.2.3+...99.100.101-98.99.100\) 

\(3A=99.100.101\) 

\(A=333300\) 

Vậy .....

5 tháng 9 2016

a) Đặt A= 2+4+6+...+1998+2000 

Ta có: A=(2+2000).1000:2

=> A=2002.1000:2

=> A=2002000:2

=> A=1001000

b) Đặt B= 5+9+13+...+1997+2001 

=> B=(2001+5).500:2

=> B=2006.500:2

=> B=1003000:2

=> B=501500

c)Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
=> 3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 => 3S = 3.33.100.101 
=> S=33.100.101= 333300

1)C=5/1.2+5/2.3+5/3.4+...+5/99.100

   C=5.(1/1.2+1/2.3+1/3.4+...+1/99.100)

   C=5.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)

   C=5.(1/1-1/100)

   C=5.99/100

   C=99/20

2)|x+1|=5

⇒x+1=5 hoặc x+1=-5

       x=4 hoặc x=-6

  3)                    Giải:

Để A=2n+5/n+3 là số nguyên thì 2n+5 ⋮ n+3

2n+5 ⋮ n+3

⇒2n+6-1 ⋮ n+3

⇒1 ⋮ n+3

Ta có bảng:

n+3=-1 ➜n=-4

n+3=1 ➜n=-2

Vậy n ∈ {-4;-2}

c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)

\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)

\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)

\(\Leftrightarrow A=33\cdot100\cdot101=333300\)

 

b) Ta có: \(1+2-3-4+...+97+98-99-100\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

\(=-4\cdot25=-100\)

11 tháng 5 2016

C=5/1.2+5/2.3+5/3.4+...+5/99.100

C=5.(1/1.2+1/2.3+1/3.4+...+1/99.100)

C=5.(1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)

C=5.(1-1/100)

C=5.99/100

C=99/20

K cho mik nha các bạn

11 tháng 5 2016

\(C=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\right)\)

     \(=5.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\right)\)

     \(=5.\left(1-\frac{1}{100}\right)\)

     \(=5.\frac{99}{100}=\frac{495}{100}\)