Cho hinh vuông ABCD,điểm E thuộc cạnh BC.Qua B kẻ thẳng đường vuông góc với DE ,đường vuông đó cắt đường thẳng DE ở H và cắt đường thẳng DC ở K
a) Chứng minh rằng DBHC là tứ giác nội tiết
b) Chứng minh rằng KC*KD=KH*KB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Theo giả thiết ABCD là hình vuông nên ÐBCD = 900; BH vuông góc DE tại H nên góc BHD = 900
=> như vậy H và C cùng nhìn BD dưới một góc bằng 900 nên H và C cùng nằm trên đường tròn đường kính BD
=> BHCD là tứ giác nội tiếp.
b. BHCD là tứ giác nội tiếp
=> góc BDC + góc BHC = 1800. (1)
góc BHK là góc bẹt nên góc KHC + góc BHC = 1800 (2).
Từ (1) và (2) => góc CHK = góc BDC mà góc BDC = 450 (vì ABCD là hình vuông)
=> góc CHK = 450 .
c. Xét tam giác KHC và tam giác KDB ta có góc CHK = góc BDC = 450 ; góc K là góc chung
=> tam giác KHC ~ tam giác KDB =>\(\dfrac{KC}{KB}\) = \(\dfrac{KH}{KD}\)
=> KC x KD = KH x KB.
d.Ta luôn có góc BHD = 900 và BD cố định nên khi E chuyển động trên cạnh BC cố định thì H chuyển động trên cung BC (E ≡ B thì H ≡ B; E ≡ C thì H ≡ C).
1) ta có: góc BHD= góc BCD= 90độ
tứ giác BHCD có hai đỉnh H,C BD có một góc vuông
➜tứ giác BHCD là tứ giác nội tiếp
2)tứ giác BHCD là tứ giác nội tiếp (đpcm)
➜góc BDC+ góc BEC = 180 độ
mà góc CHK+ góc BEC =180 độ (bù nhau)
➩góc BDC = 45 độ (đường chéo chứa hai góc bằng nhau)➩góc CHK = 45 độ
3)xét ΔDHK và ΔBCK, ta có:
góc DHK = góc BCK = 90 độ
góc DHK chung
➜ΔDHK ∞ ΔBCK (g.g)
➜\(\dfrac{KC}{KH}\cdot\dfrac{KB}{KD}\)➜KC*KD=KH*KB (đpcm)
a) Tứ giác ABCD là hình vuông (gt).
\(\Rightarrow\widehat{BCD}=90^o00\) (Tính chất hình vuông).
Xét tứ giác DBHC:
\(\widehat{BCD}=\widehat{BHD}\left(=90^o\right).\)
Mà 2 đỉnh H; C kề nhau cùng nhìn cạnh BD.
\(\Rightarrow\) Tứ giác DBHC nội tiếp (dhnb).
b) Xét \(\Delta HKD\) và \(\Delta CKB:\)
\(\widehat{K}chung.\)
\(\widehat{DHK}=\widehat{BCK}\left(=90^o\right).\)
\(\Rightarrow\text{}\Delta HKD\sim\Delta CKB\left(g-g\right).\)
\(\Rightarrow\dfrac{KH}{KC}=\dfrac{KD}{KB}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow KC.KD=KH.KB.\)