K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2022

a) Tứ giác ABCD là hình vuông (gt).

\(\Rightarrow\widehat{BCD}=90^o00\) (Tính chất hình vuông).

Xét tứ giác DBHC:

\(\widehat{BCD}=\widehat{BHD}\left(=90^o\right).\)

Mà 2 đỉnh H; C kề nhau cùng nhìn cạnh BD.

\(\Rightarrow\) Tứ giác DBHC nội tiếp (dhnb).

b) Xét \(\Delta HKD\) và \(\Delta CKB:\)

\(\widehat{K}chung.\)

\(\widehat{DHK}=\widehat{BCK}\left(=90^o\right).\)

\(\Rightarrow\text{​​}\Delta HKD\sim\Delta CKB\left(g-g\right).\)

\(\Rightarrow\dfrac{KH}{KC}=\dfrac{KD}{KB}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow KC.KD=KH.KB.\)

18 tháng 4 2022

a. Theo giả thiết ABCD là hình vuông nên ÐBCD = 900; BH vuông góc DE tại H nên góc BHD = 900 

=> như vậy H và C cùng nhìn BD dưới một góc bằng 900 nên H và C cùng nằm trên đường tròn đường kính BD

=> BHCD là tứ giác nội tiếp.

b. BHCD là tứ giác nội tiếp

=> góc BDC + góc BHC = 1800. (1)

góc BHK là góc bẹt nên góc KHC + góc BHC = 1800 (2).

Từ (1) và (2) => góc CHK = góc BDC mà góc BDC = 450 (vì ABCD là hình vuông)

=> góc CHK = 450 .

c. Xét tam giác KHC và tam giác KDB ta có góc CHK = góc BDC = 450 ; góc K là góc chung

=> tam giác KHC ~ tam giác KDB =>\(\dfrac{KC}{KB}\) = \(\dfrac{KH}{KD}\)

=> KC x KD = KH x KB.

d.Ta luôn có góc BHD = 900 và BD cố định nên khi E chuyển động trên cạnh BC cố định thì H chuyển động trên cung BC (E ≡ B thì H ≡ B; E ≡ C thì H ≡ C).

18 tháng 4 2022

-Ghi tham khảo vào bạn nhé! Ở đầu bài đăng ấy.

10 tháng 3 2021

1) ta có: góc BHD= góc BCD= 90độ

tứ giác BHCD có hai đỉnh H,C BD có một góc vuông

➜tứ giác BHCD là tứ giác nội tiếp

2)tứ giác BHCD là tứ giác nội tiếp (đpcm)

➜góc BDC+ góc BEC = 180 độ

mà góc CHK+ góc BEC =180 độ (bù nhau)

➩góc BDC = 45 độ (đường chéo chứa hai góc bằng nhau)➩góc CHK = 45 độ

3)xét ΔDHK và ΔBCK, ta có:

góc DHK = góc BCK = 90 độ

góc DHK chung

➜ΔDHK ∞ ΔBCK (g.g)

\(\dfrac{KC}{KH}\cdot\dfrac{KB}{KD}\)➜KC*KD=KH*KB (đpcm)

6 tháng 4 2017

ai giúp mình giải phần b với ạ

30 tháng 5 2017

A B C D K E O

  1. theo giả thiết ta có \(BH⊥DE\Rightarrow\widehat{BHD}=90^0\left(1\right)\).ABCD là hình vuông nên \(\widehat{BCD}=90^0\left(2\right)\)từ 1 và 2 ta có BHCD là tứ giác nội tiếp đường tròn tâm (O) có tâm O là trung điểm của BD
  2. Vì VBHCD nội tiếp đường tròn (O) nên\(\widehat{BHC}+\widehat{BDC}=180^0\left(3\right)\)Mà \(\widehat{BHC}+\widehat{CHK=180^0\left(4\right)}\)Từ 3,4 có \(\widehat{BCD}=\widehat{CHK}=45^0\)
  3. Do BHCD nội tiếp đường tròn (O) nên ta có phương tích từ K kẻ đến (O) là như nhau nên :KH.KB=KO2-OB(5) mà KC.KD = KO2 - OB2(6) , từ 5,6 có : KH.KB=KC.KD
17 tháng 5 2018