K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

Mới lớp 5

28 tháng 5 2020

a) Xét ΔAOM và ΔBOM có:

+ Góc AOM = BOM.

+ OM là cạnh huyền chung.

+ Góc OAM = OBM = 90.

Nên ΔAOM = ΔBOM (ch-gn).

=>OM là đường trung trực của đoạn thẳng AB.

b) tam giác DMC là tam giác cân.

Xét ΔADM và ΔBCM có:

+ Góc MAD = MBC = 90.

+ Góc AMD = CMB (đối đỉnh).

+ AM = BM (ΔAOM = ΔBOM).

Nên ΔADM = ΔBCM (g.c.g).

=> DM = CM.

Nên ΔDMC là tam giác cân.

c) Ta có ΔDMC là tam giác cân, Nên DM + MC > DC.

Xét ΔADM có AM là cgv nên: AM< DM =>2AM < DC.

<=>  AM + DM < DC

11 tháng 3 2018

A/
* Xét T/g AOM và T/g BOM có :
+ O= O2 ( Oz là p/g AOB )
+ OAM = OBM ( = 900 )
+ AM chung 
=> t/g AOM = BOM ( ch.gn )
* Xét T/g AMH và T/g BMH có :
+ AM = BM ( T/g AOM= BOM )
+ Góc AMH = BMH ( T/g AOM = BOM )
+ MH chung 
=> T/g AMH = T/g BMH (c.g.c)
=> AH = BH 
* Xét t/g AOH và T/g BOH có :
+ AH = BH ( cmt )
+ OH chung 
+ OA = OB ( T/g AOM = T/g BOM )
=> T/g AOH = T/g BOH (c.c.c)
* Ta có :
+ AH = BH ( cmt ) (1)
+ H= H2 ( T/g AOH = T/g BOH ) (2) 
mà H1 + H2 = 180o ( Kb )
 - (1) , (2) => H1 = H2 = 90o
=> OM là trung trực của đoạn thẳng AB
B/ Xét T/g AMD và T/g BMC có :
+ AM = BM ( T?g AOM = T/g BOM )
+ Góc DAM = CAM ( = 90o )
+ M1 = M2 ( đđ )
=> T/g AMD = T/g BMC ( ch. gn )
=> MD = MC 
=> T/g DMC cân tại D

11 tháng 3 2018


O A D H B C M 2 1 1

20 tháng 4 2018

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0