1 xe máy đi từ a đến b với vận tốc dự định là 30km/h. đi đc nữa quãng đường xe máy tăng vận tốc 40km/h nên đến b sớm hơn dự định 30 phút. tính độ dài quãng đường ab?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường AB là S ( km; >0 )
Đổi 30 phút = 0,5 giờ
Nửa quãng đường AB là: \(\frac{S}{2}\) ( km)
Thời gian đi nửa quãng đường sau theo dự định là: \(\frac{S}{2.30}=\frac{S}{60}\)(km/h)
Thời gian đi nửa quãng đường sau theo thực tế là: \(\frac{S}{2.40}=\frac{S}{80}\)(km/h)
Mà thực tế đi đến B sớm hơn dự đinh là 30 phút nên ta có phương trình:
\(\frac{S}{60}-\frac{S}{80}=0,5\Leftrightarrow S=120\left(km\right)\) thỏa mãn
Vậy Quãng đường : 120 km
Đổi 30p = \(\dfrac{1}{2}h\)
Theo đề ta có: t1 - t2 = \(\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{s}{v_1}-\dfrac{s}{v_2}=\dfrac{1}{2}\)
\(\Leftrightarrow s\left(\dfrac{1}{v_1}-\dfrac{1}{v_2}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow s.\left(\dfrac{1}{30}-\dfrac{1}{40}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow s=\dfrac{1}{2}:\dfrac{1}{120}=60\left(km\right)\)
vậy: AB = 60km
Đổi \(30phút=\dfrac{1}{2}\left(h\right)\)
Gọi vận tốc dự định của xe máy là x (km/h; x > 0 )
Thì vận tốc đi nửa quãng đường còn lại là \(x+10\)
Nửa quãng đường là : \(\dfrac{1}{2}.120=60\left(km\right)\)
Thời gian xe dự định đi từ A đến B là \(\dfrac{120}{x}\left(h\right)\)
Thời gian xe đi được nửa quãng đường đầu là \(\dfrac{60}{x}\left(h\right)\)
Thời gian xe đi nửa quãng đường còn lại khi tăng thêm 10km/h là \(\dfrac{60}{x+10}\)
Vì tăng thêm 10km/h ở nửa sau quãng đường nên xe đến B sớm hơn \(\dfrac{1}{2}\left(h\right)\) so với dự định nên ta có phương trình.
\(\dfrac{60}{x}+\dfrac{60}{x+10}+\dfrac{1}{2}=\dfrac{120}{x}\)
\(\Leftrightarrow120\left(x+10\right)+120x+x\left(x+10\right)=240\left(x+10\right)\)
\(120x+1200+120x+x^2+10x=240x+2400\)
\(\Leftrightarrow x^2+120x+120x+10x-240x+1200-2400=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2-30x+40x-1200=0\)
\(\Leftrightarrow x\left(x-30\right)+40\left(x-30\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-30=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\left(loại\right)\\x=30\left(nhận\right)\end{matrix}\right.\)
Vậy vận tốc dự định của xe máy là 30km/h
Gọi vận tốc dự định của xe máy là x ( km/h x > 0 )
Thời gian xe máy dự định đi từ A đến B = 120/x ( giờ )
Vận tốc xe đi nửa quãng đường sau = x + 10 (km/h)
Thời gian xe máy đi nửa quãng đường đầu = 60/x ( giờ )
Thời gian xe máy đi nửa quãng đường sau = 60/(x+10) giờ )
Theo bài ra ta có phương trình : 60x+60x+10=120x−1260x+60x+10=120x−12
Giải phương trình thu được x = -40 ( loại ) ; x = 30 ( tm )
Vậy vận tốc dự định của xe máy là 30km/h
Gọi vận tốc dự định của xe máy là x ( km/h x > 0 )
Thời gian xe máy dự định đi từ A đến B = 120/x ( giờ )
Vận tốc xe đi nửa quãng đường sau = x + 10 (km/h)
Thời gian xe máy đi nửa quãng đường đầu = 60/x ( giờ )
Thời gian xe máy đi nửa quãng đường sau = 60/(x+10) giờ )
Theo bài ra ta có phương trình : \(\frac{60}{x}+\frac{60}{x+10}=\frac{120}{x}-\frac{1}{2}\)
Giải phương trình thu được x = -40 ( loại ) ; x = 30 ( tm )
Vậy vận tốc dự định của xe máy là 30km/h
Gọi x là v.tốc dự định của xe(x>0, km/h)
Nửa quãng đường xe đi là: 120:2=60(km)
=> Vận tốc đi nửa quãng đường là: \(\dfrac{60}{x}\) (km/h)
=> Thời gian đi dự định là: \(\dfrac{120}{x}\left(h\right)\)
Vì nửa qquangx đường sau xe đi với thời gian là: \(\dfrac{60}{x+10}\left(h\right)\)
Theo bra ta có:
\(\dfrac{60}{x}+\dfrac{60}{x+10}=\dfrac{120}{x}-0.5\)
Gải được x=40(tmđk)
Vậy v.tốc dự định là 40km/h
Gọi vận tốc dự định của xe máy là x ( x >0) đơn vị km/h
30p = 0,5h
Có quãng đường dài 120km -> Tgian xe máy dư định đi là \(t=\frac{s}{v}=\frac{120}{x}\)( giờ)
Theo đề ta có được :
\(\frac{60}{x}+\frac{60}{x+10}=\frac{120}{x}-0,5\)
\(\Leftrightarrow\frac{60\left(x+10\right)}{x\left(x+10\right)}+\frac{60x}{x\left(x+10\right)}=\frac{120}{x}-\frac{0,5x}{x}\)
\(\Leftrightarrow\frac{60x+600}{x\left(x+10\right)}+\frac{60x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\frac{60x+600+60x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\frac{600+120x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\left(600+120x\right)\cdot x=\left(120-0,5x\right)\cdot x\left(x+10\right)\)
Từ đây tiếp tục làm tiếp :>
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian dự định của xe máy đi từ A đến B là:
\(\dfrac{x}{30}\left(h\right)\)
Thời gian thực tế của xe máy đi từ A đến B là:
\(\dfrac{x}{2\cdot30}+\dfrac{x}{2\cdot40}=\dfrac{x}{60}+\dfrac{x}{80}=\dfrac{7x}{240}\left(h\right)\)
Vì xe máy đến B sớm hơn dự định 30' nên ta có phương trình:
\(\dfrac{x}{30}-\dfrac{7x}{240}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{8x}{240}-\dfrac{7x}{240}=\dfrac{120}{240}\)
\(\Leftrightarrow8x-7x=120\)
hay x=120(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 120km