( 1+ 2+ 3+ 4+ 5+ 6+ 7......+ 108+ 109 ) x( 2014x 3- 2014x 2- 2014)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x=2013\Leftrightarrow x+1=2014\)
Thay vào ta được
\(C=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(C=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(C=1\)
Vậy C = 1
x4-2014x3+2014x2-2014x+2014 = x4 - 2013x3 - x3 + 2013x2 + x2 +2013x + x + 2014
= x4 - 2013 (x3-x2+1) - (x3-x2+1) + 2014
= x4 -2014 (x3-x2+1) + 2014 = x4 - 2014 (x3-x2) = x4 - 2014 x2 (x-1) = x2 ( 20132 - 2014.2012) = x2 [20132 - (2013+1).(2013-1)]
= x2 = 20132
giúp tôi giải bài toán này giùm nhal bạn :/x+1/+/x+2/+/x+3/+...+/x+2013/=2014x
=(1+2+3+4+5+6+7+.....+108+109)x(2014x(3-2-1))
=(1+2+3+4+5+6+7+.....+108+109)x(2014x0)
=Ax0
=0
5 Câu :V chia ra phần 1 2 câu phần 2 3 câu nhé ;v
Câu 1 : Theo đề ta có : \(\left(x+1\right)^{2014}+\left(y-1\right)^{2016}=0\)
vì \(\left\{{}\begin{matrix}\left(x+1\right)^{2014}\ge0\forall x\\\left(y-1\right)^{2016}\ge0\forall y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)=0\\\left(y-1\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy GTBT \(3x^7-5y^6+1=3\cdot\left(-1\right)^7-5\cdot1^6+1=-7\)
Câu 2 : Để \(T\left(x\right)=x^{2014}-x=0\)
\(\Leftrightarrow x^{2014}=x\)
mà \(x^{2014}\ge0\forall x\rightarrow x\ge0\) (vì \(x^{2014}=x\))
Vậy x nhận hai giá trị là x = \(\left(0;1\right)\) thì GTBT T(x) bằng 0.
dễ thấy
2014 x 3 - 2014 x 2 - 2014
=2014 x (3-2-1) = 2014 x 0 =0
do đó (1+2+3+.....+109) x (2014 x 3 - 2014 x 2 - 2014)=(1+2+3+...+109) x 0 = 0
=5995 x 2014 x (3-2-1)
=5995 x 2014 x 0
=0