K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2023

a) Ta có \(\widehat{BOM}=sđ\stackrel\frown{BM}\) (đ/lí góc ở tâm)
Mà \(\stackrel\frown{BM}=120^o=>\widehat{BOM}=120^o\)
Vì \(\widehat{BOM}+\widehat{AOM}=180^o=>\widehat{AOM}=60^o\)
Xét \(\Delta AOM\) có 
OA = OM (bán kính)
\(\widehat{AOM}=60^o\left(cmt\right)\)
\(=>\Delta OAM\) đều (dhnb tam giác đều)
b) +) Ta có \(\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn)
mà \(\Delta OAM\) đều (cmt) \(=>\widehat{OAM}=60^o\)
\(=>\widehat{ABM}=30^o\)
+) Vì R = 3 cm (gt) => OA = OB = 3 cm => AB = 6cm 
Xét \(\Delta AMB\) vg tại A 
\(=>AB^2=AM^2+BM^2\)
\(=>6^2=3^2+BM^2\)
\(=>BM=3\sqrt{3}\)

góc AMB=1/2*sđ cung AB=90 độ

góc AMI+góc AHI=90+90=180 độ

=>AMIH nội tiếp

a: góc DMC+góc AMC=180 độ

góc ABC+góc AMC=180 độ

=>góc DMC=góc ABC

b: AC=BC

mà góc NAC=góc NBC và NC chung

nên ΔAMC=ΔBNC

=>MC=NC

a) Ta có: \(\widehat{CHA}=90^0\)(CH⊥AM)

nên H nằm trên đường tròn đường kính CA(Định lí)(1)

Ta có: \(\widehat{COA}=90^0\)(CO⊥AB)

nên O nằm trên đường tròn đường tròn CA(Định lí)(2)

Từ (1) và (2) ta suy ra: H và O nằm trên đường tròn đường kính CA

hay CHOA là tứ giác nội tiếp(đpcm)

28 tháng 2 2021

giúp mấy câu b và c đc ko