K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2021

??

QT
Quoc Tran Anh Le
Giáo viên
16 tháng 3 2021

??

17 tháng 3 2021

Ta có:\( \widehat{BIJ}=\widehat{BAI}+\widehat{ABI}\)
\(=\widehat{IAC}+\widehat{IBC}\) (I là tâm đường tròn nội tiếp tam giác ABC)

Xét (O) : \(\widehat{JAC}=\widehat{JBC}\)

Nên \( \widehat{BIJ}=\widehat{JBC}+\widehat{IBC}=\widehat{IBJ}\)

Suy ra tam giác BIJ cân tại J nên JB=JI 
J ∈đường trung trực của BI
Chứng minh tương tự có: JI=JC nên J ∈đường trung trực của IC
Suy ra J là tâm đường tròn ngoại tiếp tam giác BIC
b, Xét O có \(\widehat{JBK} =90^o\)
nên tam giác JBK vuông tại B

BE là đường cao (OB=OC;JB=JC nên OJ trung trực BC)

suy ra \(JB^2=JE.JK\) hay \(JI^2=JE.JK\)
b, Xét (O) có\( \widehat{SBJ}=\widehat{BAJ}=\widehat{JBC} \)(góc tạo bởi tia tt và dây cung và góc nội tiếp cùng chắn cung JB)
suy ra BJ là đường phân giác trong\( \widehat{SBE}\)

\(BJ⊥ BK \)nên BK là đường phân giác ngoài tam giác SBE 

suy ra\( \dfrac{SJ}{JE}=\dfrac{SK}{EK}\)

hay \(SJ.EK=SK.JE\)

c, Đặt L là tâm đường tròn bàng tiếp tam giác ABC suy ra A;J;L thẳng hàng
CL phân giác ngoài góc C;CI phân giác ngoài góc C

suy ra undefined
JI=JC nên \(\widehat{JIC}=\widehat{JCI}\)

\( \widehat{JIC}+ \widehat{ILC}=90^o\)

\(\widehat{JCI}+ \widehat{JCL}=90^o\)

nên  \(\widehat{ILC}= \widehat{JCL}\)

suy ra JC=JL nên J là trung điểm IL

Có:\( \widehat{ACL}=\widehat{ACI}+90^o\)

\(\widehat{AIB}=\widehat{ACI}+90^o\)

nên  \(\widehat{ACL}=\widehat{AIB}\)

Lại có: \(\widehat{LAC}=\widehat{BAI}\)

nên tam giác ABI \(\backsim\) tam giác ALC

suy ra \(AB.AC=AI.AL\)

Có trung tuyến SB SC cát tuyến SDA nên tứ giác ABDC là tứ giác điều hòa với \(AB.DC=BD.AC=\dfrac{1}{2}.AD.BC\)

suy ra \(BD.AC=AD.EC\)

cùng với\( \widehat{BDA}=\widehat{ECA}\)

nên tam giác ABD đồng dạng AEC

suy ra \(AB.AC=AD.AE;\widehat{BAD}=\widehat{EAC}\)

vậy \(AD.AE=AI.AL;\widehat{DAI}=\widehat{LAE}\) (do AJ là phân giác góc A)

từ đây suy ra tam giác ADI\( \backsim\) tam giác ALE

nên \(\widehat{ADI}=\widehat{ALE}\)

mà \( \widehat{ADI}= \widehat{AJM}=\widehat{ALE}\)

nên JM//LE

J là trung điểm IL nên JM đi qua trung điểm IE (đpcm)

 

[CUỘC THI TRÍ TUỆ VICE]Trang fanpage của cuộc thi đã có gần 2k like và follow đó, bạn đã like để nhận tin mới nhất chưa?Cuộc thi Trí tuệ VICE | Facebook*Trả lời đúng và hay sẽ được nhận 1GP/câu trả lời nha ^^-----------------------------------------------------------[Hóa học.C411 _ 13.3.2021]Thảm hoạ Chernobyl là một vụ tai nạn hạt nhân xảy ra vào ngày 26 tháng 4 năm 1986 khi nhà máy điện hạt nhân...
Đọc tiếp

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có gần 2k like và follow đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

*Trả lời đúng và hay sẽ được nhận 1GP/câu trả lời nha ^^

-----------------------------------------------------------

[Hóa học.C411 _ 13.3.2021]

Thảm hoạ Chernobyl là một vụ tai nạn hạt nhân xảy ra vào ngày 26 tháng 4 năm 1986 khi nhà máy điện hạt nhân Chernobyl ở PripyatUkraina (khi ấy còn là một phần của Liên bang Xô viết) bị nổ tại lò phản ứng số 4. Đây được coi là vụ tai nạn hạt nhân trầm trọng nhất trong lịch sử năng lượng hạt nhân...

Nhắc đến năng lượng nguyên tử, ta không thể không nhắc đến tai nạn phóng xạ Chernobyl. Bằng những hiểu biết của các bạn, các bạn hãy chứng minh nhận định trên. (Lưu ý các bạn cần vừa đưa ra dẫn chứng rồi đưa ra kết luận, đánh giá của mình về dẫn chứng đó, chứ không chỉ có cóp thông tin trên mạng)

undefined

3
13 tháng 3 2021

Sau thảm hỏa Chernobyl , cả một thành phố với gần 60000 người dân trở thành một mớ hỗn độn đổ nát . Có người từng nói : "Cứ như thể thành phố này dừng lại ở năm 1986".

Thật vậy, tại mỗi thời điểm sau vụ nổ những đồng vị phóng xạ khác nhau đưa đến những cường độ phóng xạ khác nhau(ngày càng tăng). Những khí hiếm như Kripton,Xesi,... thả ra ngoài môi trường trong những đợt nổ đầu tiên. Khoảng 55% chất phóng xạ Iot tung ra dưới dạng thể hơi,đặc nhỏ liti . Các chất phóng xạ khó thành hơi như\(^{95}Zr,^{95}Nb,^{140}La,^{144}Ce,...\)và các nguyên tố Urani được phóng thích.

Hiện tượng tan chảy hạt nhân gây ra đám mây phóng xạ lan tới cả Nga,Ukraina,.. và các vùng khác ở châu Âu.135.000 người phải sơ tán khỏi vùng, gồm 50.000 người từ thị trấn Pripyat cạnh đó. Các quan chức y tế dự đoán rằng trong vòng 70 năm tiếp theo tỷ lệ mắc bệnh ung thư sẽ tăng thêm 2%

Thảm họa Chernobyl có lẽ là bài học lớn, là lời cảnh tỉnh với việc thờ ờ của con người trong hoạt động kỹ thuật lỏng lẻo, thờ ơ,các điều kiện bảo vệ quan trọng trong ngành kĩ thuật hạt nhân nguy hiểm này.

Qua đây,chúng ta cần nâng cao các công tác an toàn, huấn luyện công nhân kĩ thuật những kĩ thuật cơ bản để giảm thiểu tối đa mức độ nguy hiểm. Mọi quốc gia trên thế giới cần cân nhắc kĩ càng trước khi xây dựng hay vận hành bất kì nhà máy điện hạt nhân nào.

13 tháng 3 2021

Học hóa 5 năm có thể bạn chưa biết thảm họa Chernobyl...batngo

11 tháng 3 2021

Chúc mn học tốt

12 tháng 3 2021

C402:

\(1+2^x=y^2\)

\(\Leftrightarrow2^x=\left(y-1\right)\left(y+1\right)\)

Từ đó ta suy ra \(\left\{{}\begin{matrix}y-1=2^a\\y+1=2^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a+b=x\\b>a\ge1\end{matrix}\right.\)

\(\Rightarrow2^b-2^a=y+1-y+1=2\)

\(\Leftrightarrow2^a\left(2^{b-a}-1\right)=2\)

\(\Rightarrow\left\{{}\begin{matrix}2^a=2\\2^{b-a}-1=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2^1+1=3\\x=1+2=3\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(3;3\right)\) là nghiệm nguyên duy nhất của phương trình.

8 tháng 3 2021

Mò nghiệm bằng máy tính cũng may ra :))

Ta có \(x^5-x^4-x^3-11x^2+25x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^4+x^3+x^2-9x+7\right)\).

Ta có \(x^4+x^3+x^2-9x+7=\left(x^2+\dfrac{1}{2}x-1\right)^2+\left(\dfrac{11}{4}x^2-8x+6\right)>0\).

Vậy x = 2 là nghiệm duy nhất của pt.

8 tháng 3 2021

Không có mô tả.

8 tháng 3 2021

b)Hệ phương trình tương đương:

 \(\begin{array}{l} \left\{ \begin{array}{l} {\left( {xy + x} \right)^2} + 2\left( {xy + y} \right) = 3\\ xy\left( {x + 1} \right)\left( {y + 1} \right) = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {\left( {xy + x} \right)^2} + 2\left( {xy + y} \right) = 3\\ \left( {xy + y} \right)\left( {xy + x} \right) = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {a^2} + 2b = 3\\ ab = 1 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} a = 1,b = 1\\ a = - 2,b = - \dfrac{1}{2} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} xy + x = 1\\ xy + y = 1 \end{array} \right.\\ \left\{ \begin{array}{l} xy + x = - 2\\ xy + y = - \dfrac{1}{2} \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = y = \dfrac{{ - 1 - \sqrt 5 }}{2}\\ x = y = \dfrac{{\sqrt 5 - 1}}{2} \end{array} \right. \end{array}\)

KL:

8 tháng 3 2021

b)Hệ phương trình tương đương:

 {(xy+x)2+2(xy+y)=3xy(x+1)(y+1)=1⇔{(xy+x)2+2(xy+y)=3(xy+y)(xy+x)=1⇔{a2+2b=3ab=1⇔⎡⎣a=1,b=1a=−2,b=−12⇔⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣{xy+x=1xy+y=1⎧⎨⎩xy+x=−2xy+y=−12⇔⎡⎢ ⎢ ⎢⎣x=y=−1−√52x=y=√5−12{(xy+x)2+2(xy+y)=3xy(x+1)(y+1)=1⇔{(xy+x)2+2(xy+y)=3(xy+y)(xy+x)=1⇔{a2+2b=3ab=1⇔[a=1,b=1a=−2,b=−12⇔[{xy+x=1xy+y=1{xy+x=−2xy+y=−12⇔[x=y=−1−52x=y=5−12

KL:

10 tháng 3 2021

\(x+\sqrt{4-x^2}=2+x\sqrt{4-x^2}\).

ĐKXĐ: \(-2\le x\le2\).

Đặt \(\sqrt{4-x^2}=y\ge0\). Ta có \(x^2+y^2=4\Leftrightarrow\left(x+y\right)^2-2xy=4\Leftrightarrow xy=\dfrac{\left(x+y\right)^2-4}{2}\).

\(PT\Leftrightarrow x+y=2+xy\Leftrightarrow x+y=2+\dfrac{\left(x+y\right)^2-4}{2}\Leftrightarrow x+y=\dfrac{\left(x+y\right)^2}{2}\Leftrightarrow\left[{}\begin{matrix}x+y=0\\x+y=2\end{matrix}\right.\).

Với x + y = 0 ta có xy = -2. Do \(y\ge0\Rightarrow x=-\sqrt{2}\left(TMĐK\right)\).

Với x + y = 2 ta có xy = 0. Do đó x = 2 (TMĐK) hoặc x = 0 (TMĐK).

Vậy,..

11 tháng 3 2021

@Quoc Tran Anh Le CTV có cách nào zoom ảnh không ạ? Ảnh cap trên post bé quá :((

14 tháng 3 2021

Ai chưa xem thì nên xem thử nha, giàu cảm xúc lắm đấy :))

Bộ phim này lấy đi nước mắt của rất nhiều khán giả.

6 tháng 3 2021

Câu 285

a) ĐKXĐ: $x\le 10.$

 \(PT\Leftrightarrow\left(\dfrac{x^3+7x^2+18x+4}{\sqrt{10-x}}-10\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\dfrac{\left(x^5+15x^4+100x^3+360x^2+740x+984\right)}{\sqrt{10-x}\left(x^3+7x^2+8x+4+10\sqrt{10-x}\right)}+1\right]=0\)

Rõ ràng biểu thức trong ngoặc vuông vô nghiệm.

Vậy $x=1$ (TMĐKXĐ)

b) Đặt $t=ab+bc+ca.$

 \(a,b,c\in\left[0,1\right]\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1.\) (1)

Từ (1) suy ra \(3abc\ge\sum c\left(a+b-1\right)=2t-\left(a+b+c\right)\ge2t-3\)

Cũng do $a,b,c\in \left[0,1\right]$ suy ra \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\Rightarrow abc\le\sum\left(ab-a\right)+1\)

Do đó"\(VT\le\sum\dfrac{a}{1+bc}+\sum\left(ab-a\right)+1\)

\(=\sum\left(\dfrac{a}{1+bc}-a\right)+\sum ab+1\)

\(=-abc\sum\dfrac{1}{1+bc}+ab+bc+ca+1\)

\(\le t+1-\dfrac{9abc}{t+3}\le t+1-\dfrac{3\left(2t-3\right)}{t+3}\le\dfrac{5}{2}\) 

\(\Leftrightarrow\left(2t-3\right)\left(3-t\right)\ge0\)

Do \(t\le\dfrac{\left(a+b+c\right)^2}{3}=3\) nên nếu $ab+bc+ca\ge \dfrac{3}{2}$ thì bất đẳng thức đúng.

Trong trường hợp ngược lại ta có \(VT\le t+1-\dfrac{9abc}{t+3}\le t+1\le\dfrac{3}{2}+1=\dfrac{5}{2}\) (đpcm)

Hoàn tất chứng minh.

Đẳng thức xảy ra khi (bạn đọc tự xét)

6 tháng 3 2021

290

Ta có \(\dfrac{a^4b}{a^2+1}=a^2b-\dfrac{a^2b}{a^2+1}\ge a^2b-\dfrac{a^2b}{2a}=a^2b-\dfrac{ab}{2}\)

Chứng minh tương tự ta được:  

\(\dfrac{b^4c}{b^2+1}\ge b^2c-\dfrac{bc}{2};\dfrac{c^4a}{c^2+1}\ge c^2a-\dfrac{ca}{2}\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{ab}{2}-\dfrac{bc}{2}-\dfrac{ca}{2}\)

Áp dụng bđt Cô-si:

\(a^2b+a^2b+b^2c\ge3\sqrt[3]{a^2b\cdot a^2b\cdot b^2c}=3\sqrt[3]{a^3b^3\cdot abc}=3ab\)

Tương tự: \(b^2c+b^2c+c^2a\ge3bc;c^2a+c^2a+a^2b\ge3ca\)

\(\Rightarrow a^2b+a^2b+b^2c+b^2c+b^2c+c^2a+c^2a+c^2a+a^2b\ge3ab+3bc+3ca\Rightarrow3\left(a^2b+b^2c+c^2a\right)\ge3\left(ab+bc+ca\right)\Rightarrow a^2b+b^2c+c^2a\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{1}{2}\left(ab+bc+ca\right)\ge ab+bc+ca-\dfrac{1}{2}\left(ab+bc+ca\right)=\dfrac{1}{2}\left(ab+bc+ca\right)\ge\dfrac{3}{2}\sqrt[3]{\left(abc\right)^2}=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

28 tháng 2 2021

Còn tưởng giải bài tập cơ XD

28 tháng 2 2021

Eo AD có tâm quá điii..