Cho biểu thức:
P=\(\dfrac{a^2}{ab+b^2}+\dfrac{b^2}{ab-a^2}-\dfrac{a^2+b^2}{ab}\)
a) rút gọn P
b) có giá trị nào của a,b để P=0
c) tính giá trị của P biết a,b thỏa mãn điều kiện: 3a2+3b2= 10ab và a>b>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(P=\frac{a^4-a-b^4+b}{(b^3-1)(a^3-1)}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{(a^4-b^4)-(a-b)}{a^3b^3-(a^3+b^3)+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{(a-b)[(a+b)(a^2+b^2)-1]}{a^3b^3-[(a+b)^3-3ab(a+b)]+1}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{(a-b)[(a^2+b^2)-(a+b)^2]}{a^3b^3-[1-3ab]+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{-2ab(a-b)}{a^3b^3+3ab}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{-2(a-b)}{a^2b^2+3}+\frac{2(a-b)}{a^2b^2+3}=0\)
Lời giải:
\(P=\frac{a^4-a-b^4+b}{(b^3-1)(a^3-1)}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{(a^4-b^4)-(a-b)}{a^3b^3-(a^3+b^3)+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{(a-b)[(a+b)(a^2+b^2)-1]}{a^3b^3-[(a+b)^3-3ab(a+b)]+1}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{(a-b)[(a^2+b^2)-(a+b)^2]}{a^3b^3-[1-3ab]+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{-2ab(a-b)}{a^3b^3+3ab}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{-2(a-b)}{a^2b^2+3}+\frac{2(a-b)}{a^2b^2+3}=0\)
Giải
a, 2A+3B=0 <=> \(\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\)
<=>10(2m-1)+ 12(2m+1) =0
<=> 44m +2 =0
<=> m=-1/22
b, AB= A+B <=> \(\dfrac{20}{\left(2m-1\right)\left(2m+1\right)}=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}\)
<=> 20 = 5(2m -1) + 4(2m+1)
<=> 20 = 18m - 1
<=> m=7/6
a: |x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2(nhận) hoặc x=4(loại)
Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)
b: ĐKXĐ: x<>4; x<>-4
\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)
=-4x/x-4
c: A+B
=-4x/x-4+x^2+4/x-4
=(x-2)^2/(x-4)
A+B>0
=>x-4>0
=>x>4
a)
A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)
\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
MTC: 5(x-1)(x+1)
\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)
\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)
\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)
\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)
\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)
\(\Leftrightarrow10x+10\)
a: \(P=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b\)
Cko êm quỷn vở