1. Cho tam giác ABC vuông tại A, hai đường cao AI và BD cắt nhau tại H.
a) CMR: t/giác AIC đồng dạng t/giác BDC.
b) Gọi E là giao điểm của CH và AB. CMR: BE.BA + CH.CE = BC2
c) Gọi F là giao điểm của DE và AH. CMR: 1/AF +1/AI = 2/AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: ΔABC nhọn
a) Xét ΔAIC vuông tại I và ΔBDC vuông tại D có
\(\widehat{BCD}\) chung
Do đó: ΔAIC\(\sim\)ΔBDC(g-g)
Gọi J,R lần lượt là giao điểm của AI, AK với BC.
Ta có biến đổi góc:^BAR=^BAH+^HAR=^ACR+^RAC=^ARB vì vậy tam giác ABR cân tại B suy ra BO đồng thời là đường cao
Tương tự thì CO là đường cao khi đó O là trực tâm của tam giác AIK
Vậy ta có đpcm
hình vẽ trong Thống kê hỏi đáp
bài 1:
AI _|_ BC tại I => \(\widehat{AIB}=\widehat{AIC}=90^o\)
BD _|_ AC tại D => \(\widehat{ADB}=\widehat{CDB}=90^o\)
xét tam giác AIC và tam giác BDC có \(\hept{\begin{cases}\widehat{AIB}=\widehat{AIC}=90^o\\\widehat{C}chung\end{cases}}\)
=> tam giác AIC đồng dạng với tam giác BCD (g-g)
b) xét tam giác ABC có AI và BD là 2 đường cao cắt nhau tại H => H là trực tâm tam giác ABC
=> CH _|_ AB => H là trực tâm tam giác ABC
xét tam giác CEB và tam giác IAB có: \(\hept{\begin{cases}\widehat{CEB}=\widehat{AIB}=90^o\\\widehat{B}chung\end{cases}\Rightarrow\Delta CEB~\Delta AIB\left(g-g\right)\Rightarrow\frac{CB}{AB}=\frac{EB}{IB}}\)
=> CB.IB=EB.AB (1)
xét tam giác CIH và CEB có \(\hept{\begin{cases}\widehat{CIH}=\widehat{CEB}=90^o\\\widehat{C}chung\end{cases}\Rightarrow\Delta CIH~\Delta CEB\left(g-g\right)\Rightarrow\frac{CI}{CE}=\frac{CH}{CB}}\)
=> CI.CB=CE.CH (2)
từ (1) và (2) => EB.AB+CH.CE=CB.IB+CI.CB
\(\Leftrightarrow BE\cdot BA+CH\cdot CE=\left(IB+IC\right)BC=BC^2\)
\(\Leftrightarrow BE\cdot BA+CH\cdot CE=BC^2\)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD∼ΔACE(g-g)
b) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(g-g)
Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BH\cdot HD=CH\cdot HE\)(đpcm)
a: Xet ΔAMB vuông tại M và ΔANC vuông tại N có
góc MAB chung
=>ΔAMB đồng dạng với ΔANC
=>AM/AN=AB/AC
=>AM*AC=AN*AB; AM/AB=AN/AC
b: Xet ΔAMN và ΔABC co
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
c: góc MPH=góc ACN
góc NPH=góc ABM
góc ACN=góc ABM
=>góc MPH=góc NPH
=>PH là phân giác củagóc MPN
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔACE(g-g)
jjjjjjjjjjjjjjjjj