Bài 1. Cho hai đưong thẳng có phương trình là: y=-2x+3 (dı) và y=0,5x-2 (d:).
a) Tim tọa độ giao điểm C của (di) và (d2).
b) Gọi A, B lần lượt là giao điểm của đường thẳng (di) và (dz) với trục tung. Tinh diện tích tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)
Cho x = 0 => y = 2 được D(0; 2)
Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)
Nối A, D ta được đồ thị của (1).
- Vẽ đồ thị hàm số y = 5 – 2x (2)
Cho x = 0 => y = 5 được E(0; 5)
Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)
Nối B, E ta được đồ thị của (2).
b) Ở câu a) ta tính được tọa độ của hai điểm A và B là A(-4 ; 0) và B (2,5 ; 0)
Hoành độ giao điểm C của hai đồ thị (1) và (2) là nghiệm của phương trình:
0,5 x + 2 = 5 - 2x
⇔ 0,5x + 2x = 5 – 2
⇔ 2,5.x = 3 ⇔ x = 1,2
⇒ y = 0,5.1,2 + 2 = 2, 6
Vậy tọa độ điểm C(1,2; 2,6).
c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)
Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)
Ta có: AH = AO + OH = 4 + 1,2 = 5,2
BH = BO – OH = 2,5 – 1,2 = 1,3
CH = 2,6
d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.
Ta có: tgα = 0,5 => α = 26o34'
Gọi β là góc hợp bởi đường thẳng y = 5 - 2x với tia Ox
Tam giác OEB vuông tại O nên:
Phương trình hoành độ giao điểm của d 1 v à d 2 là:
4 − x 3 = 8 − 2 x ⇔ 24 – 6 x = 4 – x ⇔ 5 x = 20 ⇒ x = 4 ⇒ y = 0 nên A (4; 0)
+) B (0; yB) là giao điểm của đường thẳng d1 và trục tung. Khi đó y B = 4 − 0 3
y B = 4 3
Suy ra tổng tung độ y A + y B = 0 + 4 3 = 4 3
Đáp án cần chọn là: A
\(a,PTHDGD:2x-1=-x+2\Leftrightarrow x=1\Leftrightarrow y=1\Leftrightarrow M\left(1;1\right)\\ b,\text{Gọi đt của }\left(d\right)\text{ là }y=ax+b\left(a\ne0\right)\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=1\\0a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=4\end{matrix}\right.\Leftrightarrow\left(d\right):y=-3x+4\)
a, HS Tự làm
b, Tìm được C(–2; –3) là tọa độ giao điểm của d 1 và d 2
c, Kẻ OH ⊥ AB (CH ⊥ Ox)
S A B C = 1 2 C H . A B = 9 4 (đvdt)
b) Phương trình hoành độ giao điểm của (D1) và (d2) là:
-x+4=x-4
\(\Leftrightarrow-2x=-8\)
hay x=4
Thay x=4 vào (d1), ta được:
y=-4+4=0
Thay x=0 vào (d1), ta được:
\(y=-0+4=4\)
Thay x=0 vào (d2), ta được:
\(y=0-4=-4\)
Vậy: A(0;4); B(0;-4); C(4;0)
Ở câu a) ta tính được tọa độ của hai điểm A và B là A(-4 ; 0) và B (2,5 ; 0)
Hoành độ giao điểm C của hai đồ thị (1) và (2) là nghiệm của phương trình:
0,5 x + 2 = 5 - 2x
⇔ 0,5x + 2x = 5 – 2
⇔ 2,5.x = 3 ⇔ x = 1,2
⇒ y = 0,5.1,2 + 2 = 2, 6
Vậy tọa độ điểm C(1,2; 2,6).
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-2x+3=0,5x-2\\y=-2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
b: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}x=0\\y=-2\cdot0+3=3\end{matrix}\right.\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x=0\\y=0.5\cdot0-2=-2\end{matrix}\right.\)
Vậy: A(0;3); B(0;-2); C(2;-1)
\(AB=\sqrt{\left(0-0\right)^2+\left(-2-3\right)^2}=5\)
\(AC=\sqrt{\left(2-0\right)^2+\left(-1-3\right)^2}=2\sqrt{5}\)
\(BC=\sqrt{\left(2-0\right)^2+\left(-1+2\right)^2}=\sqrt{5}\)
Vì \(AC^2+BC^2=AB^2\) nên ΔABC vuông tại C
\(S_{BAC}=\dfrac{AC\cdot BC}{2}=\dfrac{2\sqrt{5}\cdot\sqrt{5}}{2}=5\left(đvdt\right)\)
a. -2x+3=0,5x-2
2,5x = 5
=> x= 2
=> y = -1
Vậy C ( 2;-1 ) là giao điểm của (di ) (dz )