Tính các tổng một cách hợp lí:
a,42/46+250/286+-2121/2323+-125125/143143
b,4/20+16/42+6/15+-3/5+2/21+-10/21+3/20
c,1/3+1/6+1/10+....+1/210
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{4}{20}+\frac{16}{42}+\frac{6}{15}+\frac{-3}{5}+\frac{-10}{21}+\frac{3}{20}\)
\(=\left(\frac{4}{20}+\frac{-3}{5}+\frac{6}{15}+\frac{3}{20}\right)\)\(+\left(\frac{16}{42}+\frac{2}{21}+\frac{-10}{21}\right)\)
\(=\left(\frac{4}{20}+\frac{-12}{20}+\frac{8}{20}+\frac{3}{20}\right)\)\(+\left(\frac{8}{21}+\frac{2}{21}+\frac{-10}{21}\right)\)
\(=\frac{3}{20}\)
b,\(\frac{42}{46}+\frac{250}{186}+\frac{-2121}{2323}+\frac{-125125}{143143}\)
\(=\frac{21}{23}+\frac{125}{93}+\frac{-21}{23}+\frac{-125}{143}\)
\(=\left(\frac{21}{23}+\frac{-21}{23}\right)+\left(\frac{125}{93}+\frac{-125}{143}\right)\)
\(=\frac{6250}{13299}\)
A.\(\dfrac{4}{20}\)+\(\dfrac{16}{42}\)+\(\dfrac{6}{15}\)+\(\dfrac{-3}{5}\)+\(\dfrac{2}{21}\)+\(\dfrac{-10}{21}\)+\(\dfrac{3}{20}\)
=\(\dfrac{1}{5}\)+\(\dfrac{8}{21}\)+\(\dfrac{6}{15}\)+\(\dfrac{-3}{5}\)+\(\dfrac{2}{21}\)+\(\dfrac{-10}{21}\)+\(\dfrac{3}{20}\)
=\((\dfrac{1}{5}\)+\(\dfrac{6}{15}\)+\(\dfrac{-3}{5}\)\()\)+\((\dfrac{8}{21}\)+\(\dfrac{2}{21}\)+\(\dfrac{-10}{21}\)\()\)+\(\dfrac{3}{20}\)
=\((\)\(\dfrac{1}{5}\)+\(\dfrac{2}{5}\)+\(\dfrac{-3}{5}\)\()\)+ 0 +\(\dfrac{3}{20}\)
= 0 + 0 +\(\dfrac{3}{20}\)
=\(\dfrac{3}{20}\)
B.\(\dfrac{42}{46}\)+\(\dfrac{250}{286}\)+\(\dfrac{-2121}{2323}\)+\(\dfrac{-125125}{143143}\)
=\(\dfrac{21}{23}\)+\(\dfrac{125}{143}\)+\(\dfrac{-21}{23}\)+\(\dfrac{-125}{134}\)
=\((\dfrac{21}{23}+\dfrac{-21}{23})+(\dfrac{125}{143}+\dfrac{-125}{134})\)
= 0 + 0
= 0
Chúc bạn Tran Mai học tốt nha
`Answer:`
\(\frac{4}{20}+\frac{16}{42}+\frac{6}{15}-\left(-\frac{3}{21}\right)+\left(-\frac{10}{21}\right)+\frac{3}{20}\)
\(=\left(\frac{4}{20}+\frac{3}{20}+\frac{6}{15}\right)+\left(\frac{8}{21}+\frac{3}{21}-\frac{10}{21}\right)\)
\(=\frac{3}{4}+\frac{1}{21}\)
\(=\frac{67}{84}\)
\(\frac{42}{46}+\frac{250}{186}+\left(-\frac{2121}{2323}\right)+\left(-\frac{125125}{143143}\right)\)
\(=\frac{21}{23}+\frac{125}{93}+\left(-\frac{21}{23}\right)+\left(-\frac{125}{43}\right)\)
\(=\left(\frac{21}{23}+-\frac{21}{23}\right)+\left(\frac{125}{93}+-\frac{125}{43}\right)\)
\(=\frac{6250}{13299}\)
a, 4/20+16/42+6/15+-3/5+2/2+-10/21=1/5+8/21+2/5+-3/5+2/2+-16/21=(1/5+2/5+-3/5)+(8/21=-16/21)+1=-2/21+1=-19/21 b,42/46+250/186+-2121/2323+-125125/143143 =21/23+125/93+-21/23+-125/143 =(21/23+-21/23)+(-125/143+125/93) =6250/13299
a) \(\frac{4}{20}+\frac{16}{42}+\frac{6}{15}+\frac{-3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)
\(=\frac{1}{5}+\frac{8}{21}+\frac{2}{5}+\frac{-3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)
= \(\left(\frac{1}{5}+\frac{2}{5}+\frac{-3}{5}\right)+\left(\frac{8}{21}+\frac{2}{21}+\frac{-10}{21}\right)+\frac{3}{20}\)
\(=\frac{0}{5}+\frac{0}{21}+\frac{3}{20}\)
\(=0+0+\frac{3}{20}\)
\(=\frac{3}{20}\)
b) \(\frac{42}{46}+\frac{250}{186}+\frac{-2121}{2323}+\frac{-125125}{143143}\)
\(=\frac{21}{23}+\frac{125}{93}+\frac{-21}{23}+\frac{-125}{143}\)
\(=\left(\frac{21}{23}+\frac{-21}{23}\right)+\frac{125}{93}+\frac{-125}{143}\)
\(=0+\frac{125}{93}+\frac{-125}{143}\)
\(=\frac{17875}{13299}+\frac{-11625}{13299}\)
\(=\frac{6250}{13299}\)
(Hình như câu b hơi sai)
\(a)\frac{4}{20}+\frac{16}{42}+\frac{6}{15}+\frac{-3}{5}+\frac{2}{21}+\frac{10}{21}+\frac{3}{20}\)
\(=\frac{1}{5}+\frac{8}{21}+\frac{2}{5}+\frac{-3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)
\(=\left(\frac{1}{5}+\frac{2}{5}+\frac{-3}{5}\right)+\left(\frac{8}{21}+\frac{2}{21}+\frac{-10}{21}\right)+\frac{3}{20}\)
\(=0+0+\frac{3}{20}\)
\(=\frac{3}{20}\)
Bài 1:
\(A=\dfrac{-1}{3}+1+\dfrac{1}{3}=1\)
\(B=\dfrac{2}{15}+\dfrac{5}{9}-\dfrac{6}{9}=\dfrac{2}{15}-\dfrac{1}{9}=\dfrac{18-15}{135}=\dfrac{3}{135}=\dfrac{1}{45}\)
\(C=\dfrac{-1}{5}+\dfrac{1}{4}-\dfrac{3}{4}=\dfrac{-1}{5}-\dfrac{1}{2}=\dfrac{-7}{10}\)
Bài 2:
a: \(=\dfrac{1}{5}+\dfrac{1}{2}+\dfrac{2}{5}-\dfrac{3}{5}+\dfrac{2}{21}-\dfrac{10}{21}+\dfrac{3}{20}\)
\(=\left(\dfrac{1}{5}+\dfrac{2}{5}-\dfrac{3}{5}\right)+\left(\dfrac{2}{21}-\dfrac{10}{21}\right)+\left(\dfrac{1}{2}+\dfrac{3}{20}\right)\)
\(=\dfrac{-8}{21}+\dfrac{13}{20}=\dfrac{113}{420}\)
b: \(B=\dfrac{21}{23}-\dfrac{21}{23}+\dfrac{125}{93}-\dfrac{125}{143}=\dfrac{6250}{13299}\)
Bài 3:
\(\dfrac{7}{3}-\dfrac{1}{2}-\left(-\dfrac{3}{70}\right)=\dfrac{7}{3}-\dfrac{1}{2}+\dfrac{3}{70}=\dfrac{490}{210}-\dfrac{105}{210}+\dfrac{9}{210}=\dfrac{394}{210}=\dfrac{197}{105}\)
\(\dfrac{5}{12}-\dfrac{3}{-16}+\dfrac{3}{4}=\dfrac{5}{12}+\dfrac{3}{16}+\dfrac{3}{4}=\dfrac{20}{48}+\dfrac{9}{48}+\dfrac{36}{48}=\dfrac{65}{48}\)
Bài 4:
\(\dfrac{3}{4}-x=1\)
\(\Rightarrow-x=1-\dfrac{3}{4}\)
\(\Rightarrow x=-\dfrac{1}{4}\)
Vậy: \(x=-\dfrac{1}{4}\)
\(x+4=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{5}-4\)
\(\Rightarrow x=-\dfrac{19}{5}\)
Vậy: \(x=-\dfrac{19}{5}\)
\(x-\dfrac{1}{5}=2\)
\(\Rightarrow x=2+\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{11}{5}\)
Vậy: \(x=\dfrac{11}{5}\)
\(x+\dfrac{5}{3}=\dfrac{1}{81}\)
\(\Rightarrow x=\dfrac{1}{81}-\dfrac{5}{3}\)
\(\Rightarrow x=-\dfrac{134}{81}\)
Vậy: \(x=-\dfrac{134}{81}\)
a/ \(=\frac{21}{23}+\frac{125}{143}-\frac{101.21}{101.23}-\frac{1001.125}{1001.143}=0\)
b/ \(=\frac{4}{20}+\frac{8}{21}+\frac{2}{5}-\frac{3}{5}+\frac{2}{21}-\frac{10}{21}+\frac{3}{20}=\frac{7}{20}-\frac{1}{5}=\frac{4}{20}\)
c/ \(\frac{C}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(\frac{C}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{21-20}{20.21}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)
\(\frac{C}{2}=\frac{1}{2}-\frac{1}{21}=\frac{19}{42}\Rightarrow C=\frac{19}{21}\)