K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có :

\(x=\dfrac{1}{\sqrt{5}-2}\Rightarrow x^2=\dfrac{1}{\left(\sqrt{5}-2\right)^2}=\dfrac{1}{5-4\sqrt{5}+4}\\ =\dfrac{1}{9-4\sqrt{5}}\\ y=\dfrac{1}{5+4\sqrt{5}}=\dfrac{1}{5+4\sqrt{5}+2}=\dfrac{1}{\left(\sqrt{5}+2\right)^2}\\ \Rightarrow\sqrt{y}=\sqrt{\dfrac{1}{\left(\sqrt{5}+2\right)^2}}=\dfrac{1}{\sqrt{5}+2}\) 

\(\Rightarrow A=\dfrac{1}{9-4\sqrt{5}}-3.\dfrac{1}{\sqrt{5}-2}.\dfrac{1}{\sqrt{5}+2}+\dfrac{2}{9+4\sqrt{5}}\\ =\dfrac{1}{9-4\sqrt{5}}-\dfrac{3}{5-4}+\dfrac{2}{9+4\sqrt{5}}\\ =\dfrac{9+\sqrt{5}+2\left(9-4\sqrt{5}\right)}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}-3=\dfrac{27-4\sqrt{5}}{81-80-3}\\ =27-4\sqrt{5}-3=24-4\sqrt{5}\)

5 tháng 2 2022

Đúng là "trẩu" chị anh hùng bàn phím là nhanh :^

14 tháng 5 2021

Lời giải

a) Thay a=2+√3a=2+3 và b=2−√3b=2−3 vào P, ta được:

P=a+b−abP=2+√3+2−√3−(2+√3)(2−√3)P=2+2−(22−√32)P=4−(4−3)P=4−4+3=3P=a+b−abP=2+3+2−3−(2+3)(2−3)P=2+2−(22−32)P=4−(4−3)P=4−4+3=3

b) {3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2{3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2

Vậy nghiệm hệ phương trình (1; 2)

Có gì bạn tham khảo nha//

 

a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

b) Ta có: \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{2}+1-\sqrt{2}+1\)

=2

Thay x=2 vào A, ta được:

\(A=\dfrac{-3}{3+\sqrt{2}}=\dfrac{-9+3\sqrt{2}}{7}\)

1) Sửa đề: x=0,09

Thay x=0,09 vào A, ta được:

\(A=\dfrac{\sqrt{0.09}}{\sqrt{0.09}-1}=\dfrac{0.3}{0.3-1}=\dfrac{0.3}{-0.7}=\dfrac{-3}{7}\)

a: \(P=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: Khi x=9 thì \(P=\dfrac{3-5}{3+5}=\dfrac{-2}{8}=\dfrac{-1}{4}\)

c: Để P=1/2 thì căn x-5/căn x+5=1/2

=>2 căn x-10=căn x+5

=>căn x=15

=>x=225

Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(=\dfrac{x-1}{x}\)

b) Sửa đề: \(2\sqrt{x+1}=5\)

Ta có: \(2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)

\(\Leftrightarrow x+1=\dfrac{25}{4}\)

hay \(x=\dfrac{21}{4}\)(thỏa ĐK)

Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:

\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)

Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)

c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)

mà \(2x>0\forall x\) thỏa mãn ĐKXĐ

nen \(2\left(x-1\right)-x+1>0\)

\(\Leftrightarrow2x-2-x+1>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để \(P>\dfrac{1}{2}\) thì x>1

a: Thay x=9 vào A, ta được:

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)

\(B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{\sqrt{x}+5}{x-25}=\dfrac{1}{\sqrt{x}-5}\)

b: Để \(A=B\cdot\left|x-4\right|\) thì \(\left|x-4\right|=\dfrac{A}{B}=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\sqrt{x}+2\)

\(\Leftrightarrow x-4=\sqrt{x}+2\)

\(\Leftrightarrow x-\sqrt{x}-6=0\)

=>x=9

17 tháng 6 2023

bạn ơi. Cho tớ hỏi là tại sao |x-4|= A/B hả bạn ?. Giải thích cho mình với