giúp mik với, thanks mọi người nhiều!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 4 số tự nhiên liên tiếp là a, a+1, a+2, a+3 (với a là số tự nhiên) =>a+(a+1)+(a+2)+(a+3)=4a+6 mà 6 không chia hết cho 4 nên 4a+6 không chia hết cho 4 => điều phải chứng minh
4 số tự nhiên liên tiếp đó là: n; n+1; n+2; n+3. Tổng 4 sồ đó là:
\(n+n+1+n+2+n+3=4n+\left(1+2+3\right)=4n+6\)
Vì 4n chia hết cho 4, mà 6 không chia hết cho 4 nên => 4n + 6 không chia hết cho 4 => Tổng 4 số tự nhiên liên tiếp không chia hết cho 4. ( theo tính chất chia hết của 1 một tổng)
Ta có:
\(C=\dfrac{2n-3}{n-2}=\dfrac{2n-4+1}{n-2}=2+\dfrac{1}{n-2}\)
\(C\in Z\Leftrightarrow\dfrac{1}{n-2}\in Z\Leftrightarrow n-2\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow...\)