Vẽ tam giác đều ABC có cạnh bằng 4cm. Lấy các điểm D, E, F theo thứ tự thuộc cạnh AB, BC, CA sao cho AD bằng BE bằng CF bằng 1,5cm . Chứng minh rằng tam giác DEF là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AB = AD +DB (1)
BC = BE + EC (2)
AC = AF + FC (3)
AB = AC = BC ( vì tam giác ABC là tam giác đều) (4)
AD = BE = CF ( giả thiết) (5)
Từ (1), (2), (3) và (4),(5) suy ra: BD = EC = AF
Xét ΔADF và ΔBED, ta có:
AD = BE (gt)
∠A =∠B =60o (vì tam giác ABC đều)
AF = BD (chứng minh trên)
suy ra: ΔADF= ΔBED (c.g.c)
⇒ DF=ED (hai cạnh tương ứng) (6)
Xét ΔADF và ΔCFE, ta có:
AD = CF (gt)
∠A =∠C =60o (vì tam giác ABC đều)
AF = CE (chứng minh trên)
suy ra: ΔADF= ΔCFE (c.g.c)
Nên: DF = FE (hai cạnh tương ứng) (7)
Từ (6) và (7) suy ra: DF = ED = FE
Vậy tam giác DFE đều
\(\Delta ABC\)đều (gt) nên AB = BC = AC ; góc A = góc B = góc C = 600 mà AD = BE = CF (gt)
=> AB - AD = BC - BE = AC - CF <=> BD = CE = AF
\(\Delta ADF,\Delta BED\)có AD = BE (gt) ; góc DAF = góc EBD = 600 (cmt) ; AF = BD (cmt) nên\(\Delta ADF=\Delta BED\left(c.g.c\right)\)
=> DF = ED (2 cạnh tương ứng) (1)
\(\Delta ADF,\Delta CFE\)có AD = CF (gt) ; góc DAF = góc FCE = 600 (cmt) ; AF = CE (cmt) nên\(\Delta ADF=\Delta CFE\left(c.g.c\right)\)
=> DF = FE (2 cạnh tương ứng) (2).Từ (1) và (2),ta có DF = FE = ED.Vậy\(\Delta DEF\)đều
Hình tự vẽ
Xét 3 tam giác \(ADF,BED,CFE\),ta có:
\(AD=BE=CF\)(gt )
\(\widehat{A}=\widehat{B}=\widehat{C}\)(gt)
DB=EC=AD ( do các cạnh của tam giác đều ABC - các cạnh AD,BE,FC = nhau )
=>3 tam giác \(ADF,BED,CFE\)=nhau
=> DE=DF=FE
=> tam giác DEF đều
P/s tham khảo nha
Ta có: AB=BC=CA (t/g ABC đều)
AD=BE=CF
=>BD=CE=AF
Xét t/g ADF và t/g BED có:
AD=BE (gt)
góc A=góc B = 60 độ (gt)
AF=BD (cmt)
=>t/g ADF = t/g BED (c.g.c)
=>DF = DE (1)
Xét t/g ADF và t/g CFE có:
AD = CF (gt)
góc A=góc C = 60 độ (gt)
AF = CE (cmt)
=>t/g ADF = t/g CFE (c.g.c)
=> DF = EF (2)
Từ (1) và (2) => DF = DE = EF => t/g DEF đều
vì AD=BE=CF nên AD,BE,CF là đường cao là trung trực là tung tuyến phân giác mà 3 đường cao đi qua 1 điểm , điểm này cách đều D,E,F nên tam giác DEF là tam giac đều
Ta có AB = BC = CA, AD = BE = CF
nên AB - AD = BC - BE = CA - CF hay BD = CE = AF.
\(\Delta ABC\) đều \(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
Xét hai tam giác ADF và BED có:
BD = AF (cmt)
\(\widehat{A}=\widehat{B}\left(cmt\right)\)
BE = AD (gt)
Vậy: \(\Delta ADF=\Delta BED\left(c-g-c\right)\)
\(\Rightarrow\) DF = DE (hai cạnh tương ứng)
Xét hai tam giác EBD và FCE có:
BD = CE (cmt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BE = CF (gt)
Vậy: \(\Delta EBD=\Delta FCE\left(c-g-c\right)\)
\(\Rightarrow\) DE = EF (hai cạnh tương ứng)
Do đó DF = DE = EF. Vậy \(\Delta DEF\) là tam giác đều.
Xét ΔABCΔABC là tam giác đều (gt)
=> {ABCˆ=ACBˆ=BACˆAB=AC=BC{ABC^=ACB^=BAC^AB=AC=BC (tính chất tam giác đều)
Có : ⎧⎩⎨⎪⎪D∈ABE∈BCF∈AC{D∈ABE∈BCF∈AC (gt)
=> ⎧⎩⎨⎪⎪AB=AD+BDAC=CF+CFBC=BE+CE{AB=AD+BDAC=CF+CFBC=BE+CE
Mà : {AD=BE=CFAB=AC=BC{AD=BE=CFAB=AC=BC (cmt)
=> BD=AF=CEBD=AF=CE
Xét ΔADF;ΔBEDΔADF;ΔBED có :
AF=BD(cmt)AF=BD(cmt)
DAFˆ=EBDˆDAF^=EBD^ (gt)
AD=BE(cmt)AD=BE(cmt)
=> ΔADF=ΔBED(c.g.c)ΔADF=ΔBED(c.g.c)
=> DF=DEDF=DE (2 cạnh tương ứng) (1)
Xét ΔADF;ΔCEFΔADF;ΔCEF có :
AF=EC(cmt)AF=EC(cmt)
DAFˆ=FCEˆDAF^=FCE^ (tam giác ABC đều - gt)
DA=FC(cmt)DA=FC(cmt)
=> ΔADF=ΔCEF(c.g.c)ΔADF=ΔCEF(c.g.c)
=> DF=EFDF=EF ( 2 cạnh tương ứng) (2)
- Từ (1) và (2) => DF=DE=EFDF=DE=EF
Xét ΔDEFΔDEF có :
DF=DE=EFDF=DE=EF (cmt)
=> ΔDEFΔDEF là tam giác đều (đpcm)
AB=AC=BC
AD=BE=CF
=>BD=EC=AF
Xet ΔADF và ΔBED có
AD=BE
góc A=góc B
AF=BD
=>ΔADF=ΔBED
=>DF=ED
Xét ΔADF và ΔCFE có
AD=CF
góc A=góc C
AF=CE
=>ΔADF=ΔCFE
=>DF=FE=ED
=>ΔDEF đều
AB=AC=BC
AD=BE=CF
=>BD=EC=AF
Xet ΔADF và ΔBED có
AD=BE
góc A=góc B
AF=BD
=>ΔADF=ΔBED
=>DF=ED
Xét ΔADF và ΔCFE có
AD=CF
góc A=góc C
AF=CE
=>ΔADF=ΔCFE
=>DF=FE=ED
=>ΔDEF đều