K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác OMAN có 

\(\widehat{OMA}+\widehat{ONA}=180^0\)

Do đó: OMAN là tứ giác nội tiếp

hay O,M,A,N cùng thuộc một đường tròn(1)

Xét tứ giác OHAN có

\(\widehat{OHA}+\widehat{ONA}=180^0\)

Do đó: OHAN là tứ giác nội tiếp

hay O,H,A,N cùng thuộc một đường tròn(2)

Từ (1) và (2) suy ra O,H,M,A,N cùng thuộc một đường tròn

hay AMHN là tứ giác nội tiếp

b: Xét ΔANB và ΔACN có 

\(\widehat{CAN}\) chung

\(\widehat{ANB}=\widehat{ACN}\)

Do đó:ΔANB∼ΔACN

Suy ra: AN/AC=AB/AN

hay AN2=ABxAC

10 tháng 1 2021

Mong các bạn giúp mk cái hihi

a: Xét tứ giác OHAN có 

\(\widehat{OHA}+\widehat{ONA}=180^0\)

Do đó: OHAN là tứ giác nội tiếp

hay O,H,A,N cùng thuộc 1 đường tròn(1)

Xét tứ giác OMAN có 

\(\widehat{OMA}+\widehat{ONA}=180^0\)

Do đó: OMAN là tứ giác nội tiếp

hay O,M,A,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra O,H,M,A,N cùng nằm trên 1 đường tròn

30 tháng 5 2021

a) Trong (O) có BC là dây cung không đi qua O có H là trung điểm BC

\(\Rightarrow OH\bot BC\Rightarrow\angle OHA=90\) mà \(\left\{{}\begin{matrix}\angle ONA=90\\\angle OMA=90\end{matrix}\right.\Rightarrow AMHO,ANOH\) nội tiếp \(\Rightarrow A,M,N,O,H\) cùng thuộc 1 đường tròn

b) \(AMHN\) nội tiếp \(\Rightarrow\angle AHN=\angle AMN=\angle ANM=\angle AHM\)

\(\Rightarrow\) HA là phân giác góc MHN

c) \(BE\parallel AM\Rightarrow \angle HBE=\angle HAM=\angle HNM\Rightarrow BEHN\) nội tiếp 

\(\Rightarrow\angle BHE=\angle BNE=\angle BNM=\angle BCM\Rightarrow\)\(HE\parallel CM\)

17 tháng 4 2022

mỗi v thôi sao

5 tháng 5 2022

Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O 

=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\)  => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)

Xét từ giác AMON có :

AMO + ANO = 90 + 90 = 180 

Mà 2 góc này ở vị try đối diện nhau 

=> Tứ giác AMON nội tiếp < đpcm>

22 tháng 3 2021

Ta có

\(AB=AC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến hai tiếp điểm bằng nhau)

\(\Rightarrow\Delta ABC\) cân tại A (1)

AO là phân giác của \(\widehat{BAC}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm của đường tròn là phân iacs của góc tạo bởi 2 tiếp tuyến) (2)

Từ (1) và (2) \(\Rightarrow AH\perp BC\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AHE}=90^o\) (*)

Ta có

\(OM=ON\) (Bán kính (O)) \(\Rightarrow\Delta OMN\) cân tại O

Ta có \(IM=IN\) (Giả thiết) => ON là đường trung tuyến của tg OMN

\(\Rightarrow OE\perp AN\) (Trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AIE}=90^o\) (**)

Từ (*) và (**) => I và H cùng nhìn AE dưới hai góc bằng nhau và bằng 90 độ => I và H nằm trên đường tròn đường kính AE nên 4 điểm A;H;I;E cùng nằm trên 1 đường tròn

11 tháng 3 2022

Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn. Kẻ một đường thẳng đi qua A và không đi qua O, cắt đường tròn tại hai điểm phân biệt MN (M nằm giữa A và N). Từ A vẽ hai tiếp tuyến AB và AC với (O) (BC là hai tiếp điểm). Đường thẳng BC cắt AO tại H. Gọi I là trung điểm của MN. Đường thẳng OI cắt đường thẳng BC tại E. Chứng minh AHIE là tứ giác nội tiếp.

 

 

 theo gt, ta co: 

 là trung điểm của MN

a: ΔOBC cân tại O

mà OI là trung tuyến

nên OI vuông góc BC

Xét tứ giác AION có

góc AIO+góc ANO=180 độ

=>AION là tứ giác nội tiếp

b: Xét ΔAMB và ΔACM có

góc AMB=góc ACM

góc MAB chung

=>ΔAMB đồng dạng với ΔACM

=>AM/AC=AB/AM

=>AM^2=AB*AC