K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2022

bài này có GTLN thôi bạn 

\(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)

Để pt luôn có 2 nghiệm 

\(-2m-2\ge0\Leftrightarrow m+1\le0\Leftrightarrow m\le-1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m^2+4m+3\end{matrix}\right.\)

\(A=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)

\(=\left|m^2+4m+3+4\left(m+1\right)\right|=\left|m^2+8m+7\right|\)

\(=\left|m^2+8m+16-9\right|=\left|\left(m+4\right)^2-9\right|\)

Ta có : \(m\le-1\Rightarrow m+4\le3\Leftrightarrow\left(m+4\right)^2\le9\Leftrightarrow\left(m+4\right)^2-9\le0\Rightarrow\left|\left(m+4\right)^2-9\right|\le\left|0\right|=0\)

Vậy với m = -1 thì A đạt GTNN là 0 

30 tháng 1 2022

sửa kết luận thì A đạt GTLN là 0 nhé 

NV
22 tháng 3 2023

Phương trình là: \(x^2-mx-2=0\) đúng ko em nhỉ?

22 tháng 3 2023

Dạ đúng ạ

a: Thay x=5 vào pt, ta được:

5^2-2(m-1)*5+m^2-4m+3=0

=>m^2-4m+3+25-10m+10=0

=>m^2-14m+38=0

=>(m-7)^2=11

=>\(m=\pm\sqrt{11}+7\)

b: x1+x2=2m-2

x1*x2=m^2-4m+3

(x1+x2)^2-4x1x2

=4m^2-8m+4-4m^2+4m-6

=-4m-2

(x1+x2)^2-4x1x2+2(x1+x2)

=-4m-2+4m-4=-6

18 tháng 4 2022

         `x^2 - 2 ( m + 2 ) x + m^2 + 7 = 0` `(1)`

`a)` Thay `m = 1` vào `(1)`. Ta có:

     `x^2 - 2 ( 1 + 2 ) x + 1^2 + 7 = 0`

`<=> x^2 - 6x + 8 = 0`

Ptr có: `\Delta' = b'^2 - ac = (-3)^2 - 8 = 1 > 0`

  `=>` Ptr có `2` `n_o` pb

`x_1 = [ -b' + \sqrt{\Delta'} ] / a = [ -(-3) + \sqrt{1} ] / 1 = 4`

`x_2 = [ -b' - \sqrt{\Delta'} ] / a = [ -(-3) - \sqrt{1} ] / 1 = 2`

Vậy với `m = 1` thì `S = { 2 ; 4 }`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)` Ptr `(1)` có nghiệm `<=> \Delta' >= 0`

                                     `<=> b'^2 - ac >= 0`

                                     `<=> [ - ( m + 2 ) ]^2 - ( m^2 + 7 ) >= 0`

                                     `<=> m^2 + 4m + 4 - m^2 - 7 >= 0`

                                     `<=> 4m - 3 >= 0`

                                     `<=> m >= 3 / 4`

Với `m >= 3 / 4`, áp dụng Vi-ét: `{(x_1 + x_2 = [-b] / a = 2m +4),(x_1 . x_2 = c / a = m^2 + 7):}`

Ta có: `-2x_1 + x_1 . x_2 - 2x_2 = 4`

  `<=>x_1 . x_2 - 2 ( x_1 + x_2 ) = 4`

  `<=> m^2 + 7 - 2 ( 2m +4 ) = 4`

  `<=>m^2 + 7 - 4m - 8 - 4 = 0`

  `<=> m^2 - 4m -5 = 0`

Ptr có: `\Delta' = b'^2 - ac = (-2)^2 - (-5) = 9 > 0`

`=>` Ptr có `2` `n_o` pb

`m_1 = [ -b' + \sqrt{\Delta'} ] / a = -(-2) + \sqrt{9} = 5`  (t/m)

`m_2 = [ -b' - \sqrt{\Delta'} ] / a = -(-2) - \sqrt{3} = -1` (ko t/m)

Vậy `m = 5` thì ptr có `2` nghiệm t/m yêu cầu đề bài

18 tháng 4 2022

\(∘Angel\)

\(a)\) Thay \(m=1\) vào \((1)\) cta có : 

\(x^2− 2 ( 1 + 2 ) x + 1 ^2 + 7 = 0\)

\(x ^2 − 6 x + 8 = 0\)

Pt có : \(Δ ' = b ' ^2 − a c = ( − 3 ) ^2 − 8 = 1 > 0\)

Pt có 2 \(n\)\(o\) pb

\(x1=\dfrac{b'+\sqrt{\text{Δ '}}}{a}=\dfrac{-\left(-3\right)+\sqrt{1}}{1}=4\)

\(x2=\dfrac{-b'-\sqrt{\text{Δ '}}}{a}=\dfrac{-\left(-3\right)-\sqrt{1}}{1}=2\)

\(m=1\) thì \(S=\)\(\left\{2;4\right\}\)