K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2022

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

=>\(\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)

=>\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

=>\(\dfrac{12x-8y}{16}=0\)

=>12x-8y=0

=>12x=8y

=>\(\dfrac{12x}{24}=\dfrac{8y}{24}\)

=>\(\dfrac{x}{2}=\dfrac{y}{3}\)(1)

Lại có \(\dfrac{8y-6z}{4}=0\)

=>8y-6z=0

=>8y=6z

=>\(\dfrac{8y}{24}=\dfrac{6z}{24}\)

=>\(\dfrac{y}{3}=\dfrac{z}{4}\)(2)

từ (1) và (2)=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

30 tháng 1 2022

- Bạn tham khảo à?

suy ra:

\(\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{29}=0\)

Vậy

\(\dfrac{3x-2y}{4}=0\Rightarrow3x=\dfrac{2y\Rightarrow x}{2}=\dfrac{y}{3}\left(1\right)\)

\(\dfrac{2z-4x}{4}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)

từ (1) và (2) ta được\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

6 tháng 8 2021

 

suy ra:

 

4(3x−2y)16=3(2z−4x)9=2(4y−3z)4

=12x−8y+6z−12x+8y−6z29=0

Vậy

3x−2y4=0⇒3x=2y⇒x2=y3(1)

3 tháng 8 2017

Từ \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-2y}{4}=0\\\dfrac{2z-4x}{3}=0\\\dfrac{4y-3z}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

3 tháng 8 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{4\left(3x-2y\right)}{3.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)

\(\Rightarrow\dfrac{12x-8y}{12}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{12}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{12+9+4}\)

\(=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\\\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\\\dfrac{4y-3z}{2}=0\Rightarrow4y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{z}{4}=\dfrac{x}{2}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\rightarrowđpcm\)

14 tháng 12 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{z}{4}=\dfrac{x}{2}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

15 tháng 10 2017

Ta có: \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

\(\Rightarrow12x-8y=6z-12x=8y-6z=0\)

\(\Rightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x=2y\\z=2x\\4y=3z\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3},\dfrac{z}{2}=x,\dfrac{y}{3}=\dfrac{z}{4}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3},\dfrac{z}{4}=\dfrac{x}{2},\dfrac{y}{3}=\dfrac{z}{4}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) (đpcm)

20 tháng 8 2017

Tham khảo tại đây nhé: Câu hỏi của Phong Tuấn Đỗ - Toán lớp 7 | Học trực tuyến

30 tháng 8 2017

Sửa đề:

$\dfrac{3x-2y}{4}=\dfrac{2z-4x}{9}=\dfrac{4y-3z}{9}$

\(\Leftrightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{27}=\dfrac{2\left(4y-3z\right)}{18}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{27}=\dfrac{8y-6z}{18}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{27}=\dfrac{8y-6z}{18}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+27+18}=\dfrac{0}{16+27+18}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\4y-3z=0\\2z-4x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

26 tháng 12 2021

\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}=\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\\4y-3z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\\ \Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)

8 tháng 11 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-8y}{16}=0\\\dfrac{2z-4x}{3}=0\\\dfrac{4y-3z}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=0\\2x-4z=0\\4y-3z=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

8 tháng 11 2017

0 từ đâu chui ra vậy bạn với lại đpcm là j?

25 tháng 5 2022

Ta có \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2x-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}=\dfrac{12x-8y-12x+8y-6z}{29}\)

Do đó:

\(\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\left(1\right)\)

\(\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\Rightarrow x=4;y=6;z=8\)

25 tháng 5 2022

cảm ơn chị ạ

30 tháng 12 2021

b tham khảo nhé