cho x,y dương thoã x+y=3,chứng minh x^2y<=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như trên khó theo dõi quá.
Chỉ cần áp dụng một vài BĐT thôi :)
Có: \(x^2+y^2\ge2xy\)
\(\left(x+y\right)^2\ge2\left(x^2+y^2\right)\)
\(\Leftrightarrow\frac{1}{2}\ge x^2+y^2\)
Áp dụng các BĐT trên vào CM Bđt cần Cm:
\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{4}{x^2+y^2}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\ge\frac{7}{\frac{1}{2}}=14\)
Vậy ... đpcm
Ta có: \(\left(2x+3y\right)^2< \left(2x+3y\right)^2+5x+5y+1< \left(2x+3y+2\right)^2\).
Do đó để \(\left(2x+3y\right)^2+5x+5y+1\) là số chính phương thì \(\left(2x+3y\right)^2+5x+5y+1=\left(2x+3y+1\right)^2\Leftrightarrow x=y\).
Vậy x = y
oh. đễ mà
nhưng em học lop 8
để khi nào em lên lớp 9 em giải cho :D
x,y>0
=>x2y>0
giả sử
x + y =3
x=1
y=2
vậy nên
x2y<=4
=12*2<=4
=1<=4
Áp dụng BĐT Cô-si cho 2 số thực dương, ta có:
\(3=x+y=\frac{x}{2}+\frac{x}{2}+y\ge3\sqrt[3]{\frac{x^2y}{4}}\Rightarrow\sqrt[3]{\frac{x^2y}{4}}\le1\Rightarrow\frac{x^2y}{4}\le1\Rightarrowđpcm.\)