(Làm hộ mình câu c nha)
Trong mặt phẳng tọa độ Oxy cho parabol (P): \(y=-x^2\) và đường thẳng (d) đi qua I(0;-1) và có hệ số góc k
a) CMR với mọi k thì đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt A;B
b) Gọi hoành độ của A; B lần lượt là x1;x2. CM: \(\left|x_1-x_2\right|\ge2\)
c) Chứng minh: Tam giác OAB vuông
Đường thẳng có dạng: \(y=kx-1\)
Phương trình hoành độ giao điểm: \(x^2+kx-1=0\)
Theo Viet: \(\left\{{}\begin{matrix}x_A+x_B=-k\\x_Ax_B=-1\end{matrix}\right.\) \(\Rightarrow x_A^2+x_B^2=k^2+2\)
\(A\left(x_A;kx_A-1\right);B\left(y_B;kx_B-1\right)\)
Ta có: \(OA^2+OB^2=x_A^2+\left(kx_A-1\right)^2+x_B^2+\left(kx_B-1\right)^2\)
\(=\left(x_A^2+x_B^2\right)\left(k^2+1\right)-2k\left(x_A+x_B\right)+2\)
\(=\left(k^2+2\right)\left(k^2+1\right)-2k.\left(-k\right)+2\)
\(=k^4+5k^2+4\) (1)
\(AB^2=\left(x_A-x_B\right)^2+\left(kx_A-kx_B\right)^2\)
\(=\left(k^2+1\right)\left[\left(x_A+x_B\right)^2-4x_Ax_B\right]\)
\(=\left(k^2+1\right)\left(k^2+4\right)=k^4+5k^2+4\) (2)
(1);(2) \(\Rightarrow OA^2+OB^2=AB^2\) hay tam giác OAB luôn vuông tại O