K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 1 2022

Đường thẳng có dạng: \(y=kx-1\)

Phương trình hoành độ giao điểm: \(x^2+kx-1=0\)

Theo Viet: \(\left\{{}\begin{matrix}x_A+x_B=-k\\x_Ax_B=-1\end{matrix}\right.\) \(\Rightarrow x_A^2+x_B^2=k^2+2\)

\(A\left(x_A;kx_A-1\right);B\left(y_B;kx_B-1\right)\)

Ta có: \(OA^2+OB^2=x_A^2+\left(kx_A-1\right)^2+x_B^2+\left(kx_B-1\right)^2\) 

\(=\left(x_A^2+x_B^2\right)\left(k^2+1\right)-2k\left(x_A+x_B\right)+2\)

\(=\left(k^2+2\right)\left(k^2+1\right)-2k.\left(-k\right)+2\)

\(=k^4+5k^2+4\) (1)

\(AB^2=\left(x_A-x_B\right)^2+\left(kx_A-kx_B\right)^2\)

\(=\left(k^2+1\right)\left[\left(x_A+x_B\right)^2-4x_Ax_B\right]\)

\(=\left(k^2+1\right)\left(k^2+4\right)=k^4+5k^2+4\) (2)

(1);(2) \(\Rightarrow OA^2+OB^2=AB^2\) hay tam giác OAB luôn vuông tại O

b) Để (d) đi qua (0;-1) thì

Thay x=0 và y=-1 vào y=ax+b, ta được:

\(a\cdot0+b=-1\)

\(\Leftrightarrow b=-1\)

Vậy: (d): y=ax-1

Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{1}{2}x^2=ax-1\)

\(\Leftrightarrow\dfrac{1}{2}x^2-ax+1=0\)

\(\Delta=a^2-4\cdot\dfrac{1}{2}\cdot1=a^2-2\)

Để (d) và (P) tiếp xúc với nhau thì \(\Delta=0\)

\(\Leftrightarrow a^2=2\)

hay \(a\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Vậy: Để (d) tiếp xúc với (P) và (d) đi qua (0;-1) thì \(\left(a,b\right)=\left\{\left(\sqrt{2};-1\right);\left(-\sqrt{2};-1\right)\right\}\)

Thay y=1 vào (P), ta được:

\(x^2=1\)

=>x=1 hoặc x=-1

Thay x=1 và y=1 vào (d), ta được:

\(m^2-1+3=1\)(vô lý)

Thay x=-1 và y=1 vào (d), ta được:

\(m^2-1-3=1\)

\(\Leftrightarrow m^2=5\)

hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

16 tháng 5 2022

tham khảo

Thay y=1 vào (P), ta được:

\(x^2=1\)

=>x=1 hoặc x=-1

Thay x=1 và y=1 vào (d), ta được:

\(m^2-1+3=1\)(vô lý)

Thay x=-1 và y=1 vào (d), ta được:

\(m^2-1-3=1\)

\(\Leftrightarrow m^2=5\)

hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

a: Thay x=2 vào (P),ta được:

y=2^2/2=2

2: Thay x=2 và y=2 vào (d), ta được:

m-1+2=2

=>m-1=0

=>m=1

 

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m+1=-3

hay m=-4

 

13 tháng 1 2022

Còn phần b nữa bạn ơi

25 tháng 3 2022

1) y= 2x-4

HD: y=ax+b

.... song song: a=2 và b≠-1

..... A(1;-2)  => x=1 và y=-2 và Δ....

a+b=-2

Hay 2+b=-2 (thay a=2) 

<=> b=-4

KL:................

2) Xét PT hoành độ giao điểm của (P) và (d)

x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)

*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.

*) Theo hệ thức Viet ta có: 

S=x1+x2=2(m-1) và P=x1.x2=m-3

*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

Thay S và P vào M ta có:

\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)

 

Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)\(\dfrac{15}{4}\)

Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0