CHO TAM GIÁC ABC VUÔNG Ở A CÓ AB =6CM, AC=8CM
A) TÍNH ĐỘ DÀI ĐOẠN BC
B) VẼ AH VUÔNG GÓC BC TẠI H. TRÊN HC LẤY D SAO CHO HD=HB.CHỨNG MINH: AB=AD
C) TRÊN TIA ĐỐI CỦA TIA HA LẤY ĐIỂM E SAO CHO EH=AH.CHỨNG MINH: ED VUÔNG GÓC AC
D) CHỨNG MINH BD<AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
a) xét tam giac ABC vuông tại A ta có
BC2= AB2+AC2 (định lý pitago)
BC2=62+82
BC2=100
BC=10
b) Xét tam giac ABH và tam giac ADH ta có
HB=HD (gt)
AH=AH (cạnh chung)
góc AHB= góc AHD (=90)
-> tam giác ABH= tam giac ADH (c-g-c)
-> AB= AD ( 2 cạnh tương ứng)
c)
Xét tam giac ABHvà tam giac EDH ta có
HB=HD (gt)
AH=EH (gt)
góc AHB= góc EHD (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc ABH = góc EDH (2 góc tương ứng )
mà 2 góc nằm ở vị trí sole trong
nên AB// ED
lại có AB vuông góc AC ( tam giac ABC vuông tại A)
do đó ED vuông góc AC
a)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
BC2=AB2+AC2BC2=AB2+AC2
⇒BC=√62+82=√100=10cm⇒BC=62+82=100=10cm
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
bn tham khảo
a,Áp dụng Đ. L. py-ta-go, có:
BC2=AC2+AB2
=>BC2=82+62
=64+36.
=100.
=>BC=10cm.
b, Xét tg AHB và tg AHD, có:
AH chung
góc AHB= góc AHD(=90o)
HB= DH(gt)
=>tg AHB= tg AHD(2 cạnh góc vuông)
=>AB= AD(2 cạnh tương ứng)
c, Kẻ E với C, tạo thành cạnh EC.
Kẻ E với B, tạo thành cạnh EB.
Ta có: góc BHA=90o, suy ra: góc BHA= góc EHC(2 góc đối đỉnh)
=>góc BHA= góc EHC(=90o)
=>ED vuông góc với AC(đpcm)
a) Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\) ( py- ta - go)
Thay số: 6^2 + 8^2 = BC^2
BC^2 = 100
=> BC = 10 cm
b) ta có: \(AH\perp BD⋮H\)
HD = HB
=> AH là đường trung trực của BD ( định lí đường trung trực)
mà \(A\in BD\)
=> AB = AD ( tính chất đường trung trực)
c) Xét tam giác AHB vuông tại H và tam giác EHD vuông tại H
có: HB = HD (gt)
AH = EH ( gt)
\(\Rightarrow\Delta AHB=\Delta EHD\left(cgv-cgv\right)\)
=> góc HAB = góc HED ( 2 góc tương ứng)
mà góc HAB, góc HED nằm ở vị trí so le trong
\(\Rightarrow AB//ED\)( định lí)
mà \(AB\perp AC⋮A\)(gt)
\(\Rightarrow ED\perp AC\)( định lí)
d) ta có: \(S_{\Delta ABC}=\frac{AB.AC}{2}=\frac{6.8}{2}=\frac{48}{2}=24cm^2\)
mà \(S_{\Delta ABC}=\frac{BC.AH}{2}\)
thay số \(24=\frac{10.AH}{2}=5AH\)
\(\Rightarrow AH=\frac{24}{5}=4,8cm\)
Xét tam giác ABH vuông tại H
có: \(AB^2=BH^2+AH^2\) ( py - ta - go)
thay số: 6^2 = BH^2 + 4,8^2
BH^2 = 6^2 - 4,8^2
BH^2 = 12,96
=> BH = 3,6 cm
mà BH = DH = 3,6 cm ( H thuộc BD) => DH = 3,6 cm
=> BH + DH = BD
thay số: 3,6 + 3,6 = BD
BD = 7,2 cm
mà AH = EH = 4,8 cm ( H thuộc AE) => EH = 4,8 cm
=> AH + EH = AE
thay số: 4,8 + 4,8 = AE
AE = 9,6 cm
=> BD < AE ( 7,2 cm < 9,6 cm )
mk vẽ hình đó ko đc đúng đâu ! thông cảm nha bn !
a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+82
BC2=36+64=100
⇒BC=\(\sqrt{100}\)=10
vậy BC=10
AB và AC không bằng nhau nên không chứng minh được bạn ơi
còn ED và AC cũng không vuông góc nên không chứng minh được luôn
Xin bạn đừng ném đá
Áp dụng đ/lí Py ta go cho tam giác ABC vuông ở A ta có:
BC2 = AB2 + AC2
BC2 = 62 + 82
= 100
=> BC = \(\sqrt{100}=10\left(Cm\right)\)
b) Xét tam giác DAH và tam giác BAH có:
AH chung
HD = HB
Góc H1 = góc H2
Vậy tam giác DAH = tam giác BAH
=> AD = AB (2 cạnh tương ứng)