K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2021

bài giải 

4 tháng 1 2022

\(f\left(x\right)=4x^5-\frac{1}{x}+2021\)

\(\int f(x)=\frac{4}{6}x^6-lnx+2021x\)

\(\int f(x)=\frac{2}{3}x^6-lnx+2021x\)

7 tháng 8 2018

f ( x ) = 4 x - 1 ⇒ F ( x ) = ∫ f ( x ) d x = 2 x 2 - x + C

Phương trình hoành độ giao điểm của đồ thị hàm số F(x) và f(x) là:

2 x 2 - x + C = 4 x - 1 ⇔ 2 x 2 - 5 x + C + 1 = 0 ( * )

Do hai đồ  thị hàm số trên cắt nhau tại một điểm trên trục tung nên x=0 là nghiệm của (*)

⇔ C + 1 = 0 ⇔ C = - 1

Với C=-1: Phương trình(*)

⇔ 2 x 2 - 5 x = 0 ⇔ [ x = 0 x = 5 2

Tọa độ các điểm chung của hai đồ thị hàm số trên là: (0;-1) và 5 2 ; 9            

Chọn đáp án C.

26 tháng 6 2017

Phương pháp:

+) Sử dụng các công thức nguyên hàm cơ bản

xác định hàm số F(x).

+) Giải phương trình hoành độ giao điểm.

Cách giải:  

Phương trình hoành độ giao điểm của

đồ thị hàm số F(x) và f(x) là :

 

Do hai đồ  thị hàm số trên cắt nhau tại một

điểm trên trục tung nên x=0 là nghiệm của (*)

Tọa độ các điểm chung của hai đồ thị

hàm số trên là: 

NV
11 tháng 3 2022

Từ giả thiết: \(\int f\left(x\right).e^{2x}dx=x.e^x+C\)

Đạo hàm 2 vế:

\(\Rightarrow f\left(x\right).e^{2x}=e^x+x.e^x\)

\(\Rightarrow f\left(x\right)=\dfrac{e^x+x.e^x}{e^{2x}}=\dfrac{x+1}{e^x}\)

Xét \(I=\int f'\left(x\right)e^{2x}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2.e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I=f\left(x\right).e^{2x}-2\int f\left(x\right).e^{2x}dx=\left(\dfrac{x+1}{e^x}\right)e^{2x}-2.x.e^x+C\)

\(=\left(1-x\right)e^x+C\)

30 tháng 4 2022

-(1)/(x^(2))

Chúc bạn học tốt , tick cho mình nha

 

21 tháng 10 2019

Chọn D

16 tháng 1 2017

Đáp án D

27 tháng 9 2018

Vậy m =1 là giá trị cần tìm thỏa mãn yêu cầu bài toán.

Đáp án C

19 tháng 11 2019

Đáp án D

31 tháng 5 2017

1 tháng 1 2021

\(h\left(x\right)=x^2-4x+5+m\)

\(g\left(x\right)=\left|h\left(x\right)\right|=\left|f\left(x\right)+m\right|=\left|x^2-4x+5+m\right|\)

\(h\left(0\right)=5+m;h\left(4\right)=5+m;h\left(2\right)=1+m\)

TH1: \(1+m>0\Leftrightarrow m>-1\)

\(max=5+m=9\Leftrightarrow m=4\left(tm\right)\)

TH2: \(5+m< 0\Leftrightarrow m< -5\)

\(max=-1-m=9\Leftrightarrow m=-10\left(tm\right)\)

TH3: \(5+m>0>1+m\Leftrightarrow-5< m< -1\)

Nếu \(5+m< -1-m\Leftrightarrow m< -3\)

\(max=-1-m=9\Leftrightarrow m=-10\left(tm\right)\)

Nếu \(5+m=-1-m\Leftrightarrow m=-3\)

\(max=5+m=2\ne9\)

\(\Rightarrow m=-3\) không thỏa mãn yêu cầu bài toán

Nếu \(5+m>-1-m\Leftrightarrow m>-3\)

\(max=5+m=9\Leftrightarrow m=4\left(tm\right)\)

Vậy \(m=4;m=-10\)