K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: A(1;1) B(-2;4)

\(M\left(x;x^2\right)\)

Theo đề, ta có: MA=MB

\(\Leftrightarrow\sqrt{\left(x-1\right)^2+\left(x^2-1\right)^2}=\sqrt{\left(x+2\right)^2+\left(x^2-4\right)^2}\)

\(\Leftrightarrow x^2-2x+1+x^4-2x^2+1=x^2+4x+4+x^4-8x^2+16\)

\(\Leftrightarrow6x^2-6x-18=0\)

\(\Leftrightarrow x^2-x-3=0\)

\(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(-3\right)=13>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{13}}{2}\\x_2=\dfrac{1+\sqrt{13}}{2}\end{matrix}\right.\)

Vậy: \(M\left(\dfrac{1-\sqrt{13}}{2};\dfrac{7-\sqrt{13}}{2}\right);M\left(\dfrac{1+\sqrt{13}}{2};\dfrac{7+\sqrt{13}}{2}\right)\)

18 tháng 2 2018

giúp em vs

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2+x-2=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(x-1\right)=0\\y=x^2\end{matrix}\right.\)

=>A(1;1); B(-2;4)

Tọa độ trung điểm I là:

\(\left\{{}\begin{matrix}x_I=\dfrac{1+\left(-2\right)}{2}=\dfrac{-1}{2}\\y_I=\dfrac{1+4}{2}=\dfrac{5}{2}\end{matrix}\right.\)

a) Để đồ thị hàm số \(y=ax^2\) đi qua điểm A(4;4) thì

Thay x=4 và y=4 vào hàm số \(y=ax^2\), ta được:

\(a\cdot4^2=4\)

\(\Leftrightarrow a\cdot16=4\)

hay \(a=\dfrac{1}{4}\)

8 tháng 2 2021

a, - Thay tọa độ điểm A vào hàm số ta được : \(4^2.a=4\)

\(\Rightarrow a=\dfrac{1}{4}\)

b, Thay a vào hàm số ta được : \(y=\dfrac{1}{4}x^2\)

- Ta có đồ thì của hai hàm số :

c, - Xét phương trình hoành độ giao điểm :\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy hai hàm số trên cắt nhau tại hai điểm : \(\left(0;0\right);\left(-2;1\right)\)

 

20 tháng 12 2021

a: Thay x=-1 và y=3 vào (d), ta được:

-2m-1=3

hay m=-2