tìm số tự nhiên a biết 1/2*3+1/3*4+1/4*5+...+1/a*(a+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{a\left(a+1\right)}=\frac{49}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{a}-\frac{1}{a+1}=\frac{49}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{a+1}=\frac{49}{100}\)
\(\)\(\Rightarrow\frac{1}{a+1}=\frac{1}{2}-\frac{49}{100}\)
\(\)\(\Rightarrow\frac{1}{a+1}=\frac{1}{100}\Rightarrow a+1=100\Rightarrow a=100-1\)
\(\Rightarrow a=99\)
Vậy \(a=99\)k cho mik nha :))
=1/2-1/3+1/3-1/4+...+1/a-1/(a-1)
=1/2-1/(a-1)
đề thiếu
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{a.\left(a+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{2}-\frac{1}{a+1}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{a+1}=\frac{1}{100}\Rightarrow a+1=100\Rightarrow a=99\)
a) Số số hạng là
(n-1):1+1=n(số)
Ta có: \(\dfrac{\left(n+1\right).n}{2}=231\)
\(\left(n+1\right).n=462\)
n=21
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
sai đề
sai đề trầm trọng