Tính bằng cách thuận tiện nhất:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{4}{6}+\frac{9}{12}+\frac{16}{20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)có 9 p/số
\(=\frac{1}{10}.9=\frac{9}{10}\)
\(\frac{5}{16}+\frac{5}{7}+0,4+\frac{1}{6}-\frac{4}{35}\)
= \(\frac{5}{16}+\frac{25}{35}+\frac{2}{5}+\frac{1}{6}-\frac{4}{35}\)
= \(\frac{5}{16}+\frac{2}{5}+\frac{1}{6}+\frac{25}{35}-\frac{4}{35}\)
= \(\frac{5}{16}+\frac{2}{5}+\frac{1}{6}+\frac{2}{3}\)
= \(\frac{5}{16}+\frac{2}{5}+\frac{5}{6}\)
= \(\frac{5}{16}+\frac{37}{30}\)
= \(\frac{371}{240}\)
\(=\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}\)
\(=\frac{1}{10}.9\)
\(=\frac{9}{10}\)
Đúng 100%
Đúng 100%
Đúng 100%
\(\frac{1}{10}+\frac{2}{20}+\frac{3}{30}+\frac{4}{40}+\frac{5}{50}+\frac{6}{60}+\frac{7}{70}+\frac{8}{80}+\frac{9}{90}\)
\(=\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}\)
\(=\frac{1}{10}\times9\)
\(=\frac{9}{10}\)
a) 2/9 +1/5 +7/9+4/5
=( 2/9+7/9)+(1/5+4/5)
=1+1=2
b) 1/12+3/16+5/12+5/16
=(1/12 +5/12)+(3/16+5/16)
=1/2 +1/2=1
\(a,\frac{2}{5}+\frac{1}{6}+\frac{3}{5}\)
\(=\left(\frac{2}{5}+\frac{3}{5}\right)+\frac{1}{6}\)
\(=1+\frac{1}{6}\)
\(=\frac{7}{6}\)
Hok tốt!~
Bạn thử rút gọn các phân số đi
Sau đó bạn đi tính
Như vậy kết quả sẽ nhỏ hơn đấy
2/ \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)+\left(1-\frac{1}{42}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=6-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=6-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=6-\left(1-\frac{1}{7}\right)\)
\(=6-\frac{6}{7}=\frac{36}{7}\)
1, \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)\)
\(=\left(1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\right)\)
\(=4-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)
\(=4-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)\)
\(=4-\left(1-\frac{1}{5}\right)\)
\(=4-\frac{4}{5}=\frac{16}{5}\)
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{4}{6}+\frac{9}{12}+\frac{16}{20}=\left(\frac{1}{3}+\frac{4}{6}\right)+\left(\frac{1}{4}+\frac{9}{12}\right)+\left(\frac{1}{5}+\frac{16}{20}\right)\)
\(=1+1+1=3\)
Ta có\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{4}{6}+\frac{9}{12}+\frac{16}{20}=\left(\frac{1}{3}+\frac{4}{6}\right)+\left(\frac{1}{4}+\frac{9}{12}\right)+\left(\frac{1}{5}+\frac{16}{20}\right)\)
\(=\left(\frac{2+4}{6}\right)+\left(\frac{3+9}{12}\right)+\left(\frac{4+16}{20}\right)\)
\(=\frac{6}{6}+\frac{12}{12}+\frac{20}{20}\)
\(=1+1+1\)
\(=3\)