K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

a, Xét tam giác ABC cân tại A có AH vuông BC 

=> AH đồng thời là đường trung tuyến 

=> BH = CH 

b, Theo Pytago tam giác AHB vuông tại H

\(BH=\sqrt{AB^2-AH^2}=6cm\)

=> BC = 2BH = 12 cm 

c, Vì tia đối của BC là tia BM 

=> BM = BC 

Vì tia đối của CB là tia CN 

=> CN = BC 

=> BM + BH = CN + CH 

hay H là trung điểm MN 

Xét tam giaccs AMN có : 

AH là đường cao 

AH là đường trung tuyến 

=> AH đồng thời phân giác 

1 tháng 7 2021

giúp mình với

 

Mình xin sửa lại đề một chút

Bài 3: Cho ΔABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN. Vẽ BD⊥AM tại D và CE⊥AN tại E.

a) Cm ΔAMN cân 

b) Cm DB=CE

Bài làm:

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

b) Xét ΔMBD vuông tại D và ΔNCE vuông tại E có 

BM=CN(gt)

\(\widehat{M}=\widehat{N}\)(ΔABM=ΔACN)

Do đó: ΔMBD=ΔNCE(Cạnh huyền-góc nhọn)

Suy ra: DB=EC(Hai cạnh tương ứng)

12 tháng 8 2015

Nếu BAC = 60 độ với tam giác ABC cân nữa thì thành tam giác đều rồi? 
Đâu có AB > BC được? 

12 tháng 8 2015

thầy tớ đọc . câu a,b dễ còn câu c khó

 

 

 

 

 

 

 

 

 

a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

b: Xét ΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

30 tháng 1 2022

a) \(\Delta ABC\) cân tại A (gt).

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).

Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)

Xét \(\Delta ABM\) và \(\Delta ACN:\)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)

\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)

b) Xét \(\Delta ABH\) và \(\Delta ACK:\)

\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)

\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).

\(\Rightarrow\) AH = AK (2 cạnh tương ứng).

c) Xét \(\Delta AOH\) và \(\Delta AOK:\)

\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)

\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).

\(\Rightarrow\) OH = OK (2 cạnh tương ứng).

Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)

\(\Rightarrow\) OB = OC.

\(\Rightarrow\Delta OBC\) cân tại O.

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

b: góc MBD=góc ECN

=>góc KBC=góc KCB

=>K nằm trên trung trực của BC

=>A,H,K thẳng hàng

3 tháng 3 2021

Violympic toán 7

28 tháng 3 2021

â mây zing gút chọp

29 tháng 3 2020

t lười vẽ hình lắm, vô cùng xin lỗi :(

a) Vì ∆ ABC cân tại A nên AH vừa là đường cao, vừa là trung tuyến => HB = HC = 12:2 = 6 

Áp dụng định lí  Py-ta-go cho ∆ AHB, ta được: AH2 + BH2 = AB2 => AB2 = 122 + 92 = 225 = 152 => AB = 15 = AC

=> PABC = AB + AC + BC = 15 + 15 + 18 = 48

b) Vì BM = CN (gt) ; HB = HC (cmt) => HB + BM = HC + CN => HM = HN => AH là trung tuyến của ∆ AMN (1)

 Lại có: AH ┴ BC hay AH ┴ MN => AH là đường cao của ∆ AMN (2)

Từ (1) và (2) =>∆ AMN cân tại A

c) Xét ∆ BIM và ∆ CKN vuông tại I và K có:

MB = NC (gt) ; ^KNC = ^IMB (∆AMN cân tại A) => ∆ BIM = ∆ CKN ( ch - gn ) => MI = KN

Mà AM = AN (∆AMN cân tại A) => AI = AK => ∆ AIK cân tại A

=> ^AIK = ^AKI = ( 180o - ^MAN ) : 2 = ^AMN = ^ANM => IK // MN (đồng vị) hay IK // BC

d) Vì IK // MN => ^IKN = ^KCN (slt) ; ^KIB = ^IBM (slt)

    Lại có: ^IBM = ^KCN ( vì ∆BIM=∆CKN ) => ^IKN = ^KIB hay ^OIK = ^OKI => ∆OKI cân tại O => OK = OI

Xét ∆ AIO và ∆ AKO có:

AI = AK ( ∆AIK cân tại A) ; OK = OI (cmt) ; AO (chung) => ∆ AIO = ∆ AKO ( c-c-c )

=> ^OAI = ^OAK (3)

Vì ∆AMN cân tại A => AH là phân giác của ∆AMN.=> ^HAM = ^HAN hay ^HAI = ^HAK (4)

Từ (3) và (4) => A, O, H thẳng hàng.

Ya, that's it!

16 tháng 4 2020

Kien thuc nay ai da duoc hoc ma hieu 

crazy girl

7 tháng 2 2021

a/ Có \(\widehat{ABC}=\widehat{ACB}\) (t/g ABC cân tại A)

=> \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)

=> \(\widehat{ABH}=\widehat{ACK}\)

b/ Xét t/g ABH và t/g ACK có

AB = AC 

\(\widehat{ABH}=\widehat{ACK}\)

BH = CK

=> t/g ABH = t/g ACK (c.g.c)

=> AH = AK

=> t/g AHK cân tại A 

c/ Xét t/g BHM vuông tại M và t/g CKN vuông tại N có

BH = CK\(\widehat{AHK}=\widehat{AKH}\) (t/g AHK caantai A)

=> t/g BHM = t/g CKN (ch-gn)

=> BM = CNd/ Có

AH = AK 

HM = KN (t.g BHM = t/g CKN)

=> AM =AN

=> t/g AMN cân tại A 

=> \(\widehat{AMN}=\dfrac{180^o-\widehat{HAK}}{2}\)

Mà \(\widehat{AHK}=\dfrac{180^o-\widehat{HAK}}{2}\) (t/g AHK cân tại A)

=> \(\widehat{AMN}=\widehat{AHK}\)

Mà 2 góc này đồng vị

=> MN// HK

a) Ta có: \(\widehat{ABC}+\widehat{ABH}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACK}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABH}=\widehat{ACK}\)(đpcm)

b) Xét ΔABH và ΔACK có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABH}=\widehat{ACK}\)(cmt)

BH=CK(gt)

Do đó: ΔABH=ΔACK(c-g-c)

nên AH=AK(hai cạnh tương ứng)

Xét ΔAHK có AH=AK(cmt)

nên ΔAHK cân tại A(Định nghĩa tam giác cân)

c) Xét ΔMHB vuông tại M và ΔNKC vuông tại N có

BH=CK(gt)

\(\widehat{H}=\widehat{K}\)(hai góc ở đáy của ΔAHK cân tại K)

Do đó: ΔMHB=ΔNKC(cạnh huyền-góc nhọn)

Suy ra: BM=CN(hai cạnh tương ứng)

d) Ta có: ΔMHB=ΔNKC(cmt)

nên MH=NK(hai cạnh tương ứng)

Ta có: AM+MH=AH(M nằm giữa A và H)

AN+NK=AK(N nằm giữa A và K)

mà AK=AH(cmt)

và MH=NK(cmt)

nên AM=AN

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAMN cân tại A(cmt)

nên \(\widehat{AMN}=\dfrac{180^0-\widehat{MAN}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{HAK}}{2}\)(1)

Ta có: ΔAHK cân tại A(cmt)

nên \(\widehat{AHK}=\dfrac{180^0-\widehat{HAK}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{AHK}\)

mà \(\widehat{AMN}\) và \(\widehat{AHK}\) là hai góc ở vị trí đồng vị

nên MN//HK(Dấu hiệu nhận biết hai đường thẳng song song)