Chứng tỏ 15n+2 là phân số tối giản với mọi số tự nhiên n
_____
5n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
Gọi d là ƯCLN của 10n + 1 và 15n + 2 ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}10n+1⋮d\\15n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+1\right)⋮d\\2\left(15n+2\right)⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}30n+3⋮d\\30n+4⋮d\end{cases}\Rightarrow\left(30n+4\right)-\left(30n+3\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{10n+1}{15n+2}\)là p/s tối giải.
Gọi UCLN(2n+1,5n+2)=d
Ta có:2n+1 chia hết cho d =>5(2n+1) chia hết cho d =>10n+5 chia hết cho d
5n+2 chia hết cho d =>2(5n+2) chia hết cho d =>10n+4 chia hết cho d
=>(10n+5)-(10n+4) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số \(\frac{2n+1}{5n+2}\) tối giản với mọi số tự nhiên n
Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)
Ta có:
3n + 2 chia hết cho d
5n + 3 chia hết cho d
<=> 3(3n + 2) chia hết cho d = 9n + 6 chia hết cho d
<=> 2(5n +3) chia hết cho d = 10n + 6 chia hết cho d
=> 10n + 6 - 9n + 6 chia hết cho d = 1 chia hết cho d
=> d = 1
<=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
=> Phân số \(\frac{3n+2}{5n+3}\) là phân số tối giản.
Đặt d = ƯCLN(5n+1, 6n+1) thì
5n+1 chia hết cho d, 6n+1 chia hết cho d
=> 6(5n+1) - 5(6n+1) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1) = {1; -1} => d = 1
Vậy 5n+1/6n+1 tối giản với mọi STN n
Gọi d là UCLN của 5n+1 và 6n+1
\(\Rightarrow5n+1⋮d\)và \(6n+1⋮d\)
Hay \(6\left(5n+1\right)⋮d\)và \(5\left(6n+1\right)⋮d\)
\(\Leftrightarrow30n+6⋮d\)và \(30n+5⋮d\)
\(\Rightarrow30n+6-\left(30n+5\right)⋮d\)
Hay \(1⋮d\Rightarrow d=1hoac\left(-1\right)\Rightarrow dpcm\)
Ai thấy đúng k nha
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
a: Gọi d=UCLN(4n+1;6n+1)
\(\Leftrightarrow3\left(4n+1\right)-2\left(6n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>4n+1/6n+1 là phân số tối giản
b: Gọi a=UCLN(5n+3;3n+2)
\(\Leftrightarrow3\left(5n+3\right)-5\left(3n+2\right)⋮a\)
\(\Leftrightarrow-1⋮a\)
=>a=1
=>5n+3/3n+2 là phân số tối giản
Với n chẵn ta thấy tử số phân số trên chẵn
Mà mẫu số lẻ
Nên hiển nhiên phân số trên tối giản
Với n lẻ, làm tương tự
gọi d là UCLN của 2 số này
phân tích ra và chứng minh nó là 2 số nguyên tố cùng nhau có ước là 1 là xong
Gọi ƯCLN(15n+2,5n-1)=d (d thuộc N*)
Suy ra: 15n+2 chia hết cho d; 5n-1 chia hết cho d
Vì 5n-1 chia hết cho d;3 là STN
Suy ra: 3.(5n-1) chia hết cho d
Hay: 15n-3 chia hết cho d (1)
Mà 15n+2 chia hết cho d (2)
Từ (1)(2) suy ra: (15n-3)-(15n-2) chia hết cho d
15n-3-15n-2 chia hết cho d
1chia hết cho d
Suy ra: d thuộc ƯC(1)
Mà ƯC(1)=(1;-1)
Suy ra: d thuộc (1;-1)
mà d là ƯCLN ( 15n+2,5n-1)
Suy ra: d=1
Hay:ƯCLN (15n+2,5n-1)=1
Suy ra: 15n+2/5n-1 là phân số tối giản