Xác định m để PT: m3(x-2)-8(x+m)=4m2 có nghiệm duy nhất là số ko lớn hơn 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(m^3(x-2)-8(x+m)=4m^2\)
\(\Leftrightarrow x(m^3-8)=2m^3+4m^2+8m\)
\(\Leftrightarrow x(m-2)(m^2+2m+4)=2m(m^2+2m+4)\)
\(\Leftrightarrow (m^2+2m+4)[x(m-2)-2m]=0\)
\(\Leftrightarrow x(m-2)-2m=0\) (do \(m^2+2m+4=(m+1)^2+3>0\forall m\) )
Để PT có nghiệm duy nhất thì \(m-2\neq 0\Leftrightarrow m\neq 2\) (1)
Khi đó nghiệm của PT là: \(x=\frac{2m}{m-2}\leq 1\Leftrightarrow 2+\frac{4}{m-2}\leq 1\)
\(\Leftrightarrow \frac{4}{m-2}\leq -1\)
\(0> m-2\geq -4\Leftrightarrow 2> m\geq -2\) (2)
Vậy kết hợp (1)(2) suy ra \(2> m\geq -2\)
a: Để phương trình có nghiệm kép thì
(m-1)^2-4(m-1)(m+1)(m+3)=0 và m+3<>0
=>(m-1)[m-1-4(m^2+4m+3)]=0 và m+3<>0
=>m=1 hoặc m-1-4m^2-16m-12=0
=>m=1 hoặc \(m=\dfrac{-15\pm\sqrt{17}}{8}\)
b: Để phương trình có nghiệm duy nhất thì
m+3=0 hoặc Δ=0
=>\(m\in\left\{1;-3;\dfrac{-15\pm\sqrt{17}}{8}\right\}\)
b1 \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)
\(\Leftrightarrow ax-3x=2\)
\(\Leftrightarrow\left(a-3\right)x=2\)
để pt vô nghiệm thì a-3=0 <=>a=3 thì pt vô nghiệm
2,\(4x-k+4=kx+k\)
\(\Leftrightarrow4x-kx=2k-4\)
\(\Leftrightarrow\left(4-k\right)x=2k-4\)
để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)
pt vô nghiệm thì 4-k=0 <=.>k=4
a) Thay m=2 vào phương trình, ta được:
\(2^2+4\cdot3-3=2^2+x\)
\(\Leftrightarrow x+4=4+12-3\)
\(\Leftrightarrow x+4=13\)
hay x=9
Vậy: Khi m=2 thì x=9
Lời giải:
Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$
a) Với $m=2$ thì $x=4.2-3=5$
Vậy $x=5$
b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$
c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$