Từ M nằm ngoài (o), kẻ hai tiếp tuyến MA,MB đến (o). Từ M kẻ đường thẳng cắt(o) tại 2 điểm C và D (MD>MC)
a. CM: OM vuông góc với
b. MB^2=MC*MD
c. gọi H=OM giao AB
CM: MC*MD=MH*MO
ai giúp tớ nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo tại đây nhé.
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: MAOB nội tiếp
=>góc MAB=góc MBA=góc MOA
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
OH*OM+MC*MD
=OA^2+MA^2=OM^2
d: MH*MO=MC*MD
=>MH/MD=MC/MO
=>ΔMHC đồng dạng với ΔMDO
=>góc OHC+góc ODC=180 độ
=>OHCD nội tiếp
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: MAOB nội tiếp
=>góc MAB=góc MBA=góc MOA
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
OH*OM+MC*MD
=OA^2+MA^2=OM^2
d: MH*MO=MC*MD
=>MH/MD=MC/MO
=>ΔMHC đồng dạng với ΔMDO
=>góc OHC+góc ODC=180 độ
=>OHCD nội tiếp
mình bổ sung OM vuông AB nhé
a, Ta có : AM = MB ( tc tiếp tuyến cắt nha )
OA = OB => OM là đường trung trực đoạn AB
=> OM vuông AB
b, Xét tam giác MBC và tam giác MDB có :
^M _ chung ; ^MBC = ^MDB ( cùng chắn cung BC )
Vậy tam giác MBC ~ tam giác MDB ( g.g )
=> MB/MD=MB/MC => MB^2 = MD.MC (1)
c, Vì MB là tiếp tuyến đường tròn (O) với B là tiếp điểm
=> ^MBO = 900
Xét tam giác MBO vuông tại B, đường cao BH
Ta có : MB^2 = MH . MO ( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra MC . MD = MH . MO