K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

Goi d là ƯCLN(3n+2;5n+3)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}}\) 

\(\Leftrightarrow15n+10-\left(15n+9\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

=> 3n+2 và 5n+3  có ƯCLN = 1 

=> 3n+2 và 5n+3 nguyên tố cùng nhau 

22 tháng 11 2016

gọi d là ước chung lớn nhất củaA=3n+5vàB=5n+8

=>3n+5 chia hết cho d và 5n+8 chia hết cho d

=> 5 A chia hết cho d và 3 B chia hết cho d

=> 5A-3B = 15n+25-15n-24 chia hết cho d 

hay 1 chia hết cho d => d=1 => dpcm

17 tháng 12 2021

Gọi UCLN(3n+2,5n+3) la d

=>3n+2 chia hết cho d=>15n+10 chia hết cho d

=>5n+3 chia hết cho d=>15n+9 chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau

17 tháng 12 2021

Gọi UCLN(3n+2,5n+3) la d

=>3n+2 chia hết cho d=>15n+10 chia hết cho d

=>5n+3 chia hết cho d=>15n+9 chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau

23 tháng 12 2017

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

13 tháng 12 2017

mình ko biet làm nha

DD
31 tháng 12 2021

Đặt \(d=\left(5n+4,4n+3\right)\).

Suy ra 

\(\hept{\begin{cases}5n+4⋮d\\4n+3⋮d\end{cases}}\Rightarrow4\left(5n+4\right)-4\left(4n+3\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.