Chứng tỏ rằng với mọi STN n thì 3n+2 và 5n+3 là nguyên tố cùng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ước chung lớn nhất củaA=3n+5vàB=5n+8
=>3n+5 chia hết cho d và 5n+8 chia hết cho d
=> 5 A chia hết cho d và 3 B chia hết cho d
=> 5A-3B = 15n+25-15n-24 chia hết cho d
hay 1 chia hết cho d => d=1 => dpcm
Gọi UCLN(3n+2,5n+3) la d
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d=>15n+9 chia hết cho d
=>(15n+10)-(15n+9) chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau
Gọi UCLN(3n+2,5n+3) la d
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d=>15n+9 chia hết cho d
=>(15n+10)-(15n+9) chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.
Đặt \(d=\left(5n+4,4n+3\right)\).
Suy ra
\(\hept{\begin{cases}5n+4⋮d\\4n+3⋮d\end{cases}}\Rightarrow4\left(5n+4\right)-4\left(4n+3\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Goi d là ƯCLN(3n+2;5n+3)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}}\)
\(\Leftrightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
=> 3n+2 và 5n+3 có ƯCLN = 1
=> 3n+2 và 5n+3 nguyên tố cùng nhau