Cho tam giác ABC có \(\widehat{A}\)= 60o; \(\widehat{B}\)= 80o và có phân giác AD
a) So sánh các cạnh của tam giác ADC
b) So sánh các cạnh của tam giác ADB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựng \(AH\) vuông góc \(BC\). Đặt \(AB=x\Rightarrow AH=x.\sin60^0=\dfrac{x\sqrt{3}}{2};BH=x\cos60^0=\dfrac{x}{2}\)
\(\Rightarrow HC=BC-BH=8-\dfrac{x}{2};AC=12-x\)
Tam giác \(AHC\) vuông tại \(H\Rightarrow AC^2=AH^2+HC^2\Rightarrow\left(12-x\right)^2=\dfrac{3x^2}{4}+\left(8-\dfrac{x}{2}\right)^2\)
Giải phương trình trên ta được \(x=5\).
Vậy \(AB=5cm\).
Ta có ∠C = 180o - 60o - 30o = 90o
Vì ∠C > ∠A > ∠B ⇒ AB > BC > AC. Chọn C
Áp dụng định lý Sin trong tam giác ABC ta có:
Vậy bán kính đường tròn ngoại tiếp tam giác bằng 2√3.
Ta có ∠C = 180o - 30o - 60o = 90o
Tam giác ABC vuông tại C nên trực tâm tan giác ABC là điểm C.
Chọn C
Đề thiếu dữ kiện bạn nhé, chỉ tính được tổng của góc D và góc C thôi.
thôi nha mik tự làm đc r