K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2=2x-1\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b: Phương trình hoành độ giao điểm là:

\(x^2-mx+m-1=0\)

\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m-2<>0

hay m<>2

Theo đề, ta có: \(x_1+x_2+2\sqrt{x_1x_2}=9\)

\(\Leftrightarrow m+2\sqrt{m-1}=9\)

\(\Leftrightarrow\sqrt{m-1}=\dfrac{9-m}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 9\\m^2-18m+81-4m+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1< m< 9\\\left(m-5\right)\left(m-17\right)=0\end{matrix}\right.\)

=>m=5

28 tháng 12 2020

- Xét phương trình hoành độ giao điểm :

\(x^2-3mx+m^2+1=mx+m^2\)

\(\Leftrightarrow x^2-4mx+1=0\) ( 1 )

Có : \(\Delta^,=4m^2-1\)

- Để (d) cắt ( P ) tại 2 điểm phân biệt trên trục hoành 

<=> Phương trình ( 1 ) có 2 nghiệm phân biệt .

<=> \(\Delta^,=4m^2-1\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{1}{2}\end{matrix}\right.\)

- Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=1\end{matrix}\right.\)

( đến đây giải nốt nhá hình như thiếu đề đoạn thỏa mãn :vvv )

28 tháng 12 2020

cái trị tuyệt đối = 1 giải hộ mik vs

 

a: Thay m=4 vào (d), ta được: y=4x+5

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x-5=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{5;-1\right\}\\y\in\left\{25;1\right\}\end{matrix}\right.\)

b: Phương trình hoành độ giao điểm là:

\(x^2-mx-5=0\)

a=1; b=-m; c=-5

Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-5\end{matrix}\right.\)

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{m^2-4\cdot\left(-5\right)}=2\)

\(\Leftrightarrow m^2+20=4\)(vô lý)

a: Khi m=-1 thì (d): y=-x+1-(-1)=-x+2

PTHĐGĐ là:

x^2+x-2=0

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

=>y=4 hoặc y=1

b: PTHĐGĐ là:

x^2-mx+m-1=0

Δ=(-m)^2-4(m-1)

=m^2-4m+4=(m-2)^2>=0

Để (P) cắt (d) tại hai điểm pb thì m-2<>0

=>m<>2

\(\sqrt{x_1}+\sqrt{x_2}=3\)

=>x1+x2+2 căn x1x2=9

=>\(m+2\sqrt{m-1}=9\)

=>\(m-1+2\sqrt{m-1}=8\)

=>\(\left(\sqrt{m-1}+4\right)\left(\sqrt{m-1}-2\right)=0\)

=>m=5

3 tháng 4 2023

m<>2 là gì vậy ạ?

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-2=0\)

\(\Leftrightarrow3x^2-2mx-4=0\)

a=3; b=-2m; c=-4

Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-4}{3}=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=36\)

=>m=9 hoặc m=-9

27 tháng 4 2023

- Phương trình hoành độ giao điểm của (P) và (d'):

\(-x^2=mx-4\Leftrightarrow x^2+mx-4=0\left(1\right)\)

\(a=1;b=m;c=-4\)

\(\Delta=b^2-4ac=m^2-4.\left(1\right).\left(-4\right)=m^2+16>0\)

Vì \(\Delta>0\) nên (P) và (d) luôn cắt nhau tại hai điểm phân biệt có hoành độ x1, x2.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{m}{1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{-4}{1}=-4\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(-m\right)^2-2.\left(-4\right)-\left(-m\right)-18=0\)

\(\Leftrightarrow m^2+m-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

Vậy m=4 hay m=-3.