cmr với mọi n thuộc N p/s 7n+4/ 9n+5 là p/s tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử\(\hept{\begin{cases}7n+4⋮d\left(d\inℤ\right)\\9n+5⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}63n+36⋮d\\63n+35⋮d\end{cases}}\)
\(\Leftrightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)
\(\Leftrightarrow63n-63n+36-35⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\in\left\{-1;1\right\}\)
\(\Leftrightarrow\hept{\begin{cases}7n+4\\9n+5\end{cases}}\)tối giản\(\Leftrightarrow\)đcpm
Chúc bạn học giỏi!
Đừng quên nha! ^-^
Giả sử ước chung của 7n+4 và 9n+5 là d; ta có:
-\(\left(7n+4\right)⋮d=>9\left(7n+4\right)=\left(63n+36\right)⋮d\)
- \(\left(9n+5\right)⋮d=>7\left(9n+5\right)=\left(63n+35\right)⋮d\)
Do cả hai số đều chia hết cho d nên hiệu cũng chia hết cho d;
=> (63n + 36) - ( 63n + 35) \(⋮\)d=> \(1⋮d=>d=\pm1\)
Vậy phân số trên luôn tối giản;
CHÚC BẠN HỌC TỐT...
Gọi \(d\) là \(UCLN\left(7n+4;9n+5\right)\)
\(\Rightarrow7n+4⋮d\Rightarrow9\left(7n+4\right)⋮d\Rightarrow63n+36⋮d\)
\(\Rightarrow9n+5⋮d\Rightarrow7\left(9n+5\right)⋮d\Rightarrow63n+35⋮d\)
\(\Rightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\dfrac{7n+4}{9n+5}\) tối giản với mọi \(n\in N\)
\(a)\)\(ƯCLN\left(7n+8;8n+9\right)\)\(d\)
\(\Rightarrow\) \(\left(7n+8\right)⋮d\) và \(\left(8n+9\right)⋮d\)
\(\Rightarrow\)\(8\left(7n+8\right)⋮d\) và \(7\left(8n+9\right)⋮d\)
\(\Rightarrow\)\(\left(56n+64\right)⋮d\) và \(\left(56n+63\right)⋮d\)
\(\Rightarrow\)\(\left(56n+64-56n-63\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
Nên \(ƯCLN\left(7n+8;8n+9\right)=\left\{1;-1\right\}\)
Vậy \(\frac{7n+8}{8n+9}\) là phân số tối giản
Gọi ƯCLN(7n+4;5n+3)=d (d thuộc N*)
(chú ý :chc nghĩa là chia hết cho)
=>7n+4 chc d =>5(7n+4) chc d=>35n+20 chc d
=>5n+3 chc d =>7(5n+3) chc d=>35n+21 chc d
=>35n+21-35n-20 chc d
=> 1 chc d
vì d thuộc N =>d=1
=>ƯCLN(7n+4;5n+3)=1 (với mọi n)
Vậy phân số 7n+4/5n+3 là phân số tối giản với mọi n
Gọi d = ƯCLN(n - 5; 3n - 14) (d thuộc N*)
=> n - 5 chia hết cho d; 3n - 14 chia hết cho d
=> 3.(n - 5) chia hết cho d; 3n - 14 chia hết cho d
=> 3n - 15 chia hết cho d; 3n - 14 chia hết cho d
=> (3n - 14) - (3n - 15) chia hết cho d
=> 3n - 14 - 3n + 15 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n - 5; 3n - 14) = 1
=> n - 5/3n - 14 là phân số tối giản (đpcm)
a: Gọi d=UCLN(4n+8;2n+3)
\(\Leftrightarrow4n+8-4n-6⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+3 là số lẻ
nên d=1
=>ĐPCM
b: Gọi a=UCLN(7n+4;9n+5)
\(\Leftrightarrow63n+36-63n-35⋮a\)
=>a=1
=>ĐPCM
k đúng cho mình với:
gọi d là Ư(21n+4;14n+3)
=>21n+4 và 14n+3 chia hết cho d
=>42n+8 và 42n+9 chia hết cho d
=>42n+9-42n+8 chia hết cho d
=>1 chia hết cho d
=>d thuộc ước của 1
=>d thuộc -1 và 1
=>21n+1/14n+3 là phân số tối giản
Gọi d là ƯCLN(21n + 4;14n + 3) nên ta có :
21n + 4 ⋮ d và 14n + 3 ⋮ d
<=> 2(21n + 4) ⋮ d và 3(14n + 3) ⋮ d
<=> 42n + 8 ⋮ d và 42n + 9 ⋮ d
=> (42n + 9) - (42n + 8) ⋮ d
=> 1 ⋮ d => d = 1
=> \(\frac{21n+4}{14n+3}\) là phân số tối giản ( đpcm )
phân số tối giản là phân số mà tử ko còn chia hết mẫu nên ta phải CM 7n + 4 ko chia hết 9n + 5
nhân 9 vào mẫu ta đc 63n + 36=7.(9n + 5) +1 mà 1 ko chia hết cho 9n+5, =>63n + 36 ko chia hết cho 5 =>7n + a ko chia hết cho 9n + 5
vậy ps đó tối giản
đó là 1 TH còn TH còn lại là cm tử ko chia hết mẩu là nhân 7 vàotuwr rồi làm tương tự