K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

toi ko biet 

11 tháng 3 2019

Ta có : \(\widehat{BOM}\)\(\widehat{MON}\)\(\widehat{NOC}\)\(180^0\) (kề bù)

           \(\widehat{BOM}\)\(60^0\) + \(\widehat{NOC}\)\(180^0\)

           \(\widehat{BOM}\)+  \(\widehat{NOC}\) = \(120^0\)  \(\left(1\right)\)

\(X\text{ét}\)\(\Delta NOC\)có :

   \(\widehat{NOC}\)+  \(\widehat{ONC}\) + \(\widehat{NCO}\)\(180^0\)

   \(\widehat{NOC}\) + \(\widehat{ONC}\) +  \(60^0\) = \(180^0\)

   \(\widehat{NOC}\) + \(\widehat{ONC}\) = \(120^0\) \(\left(2\right)\)

Từ \(\left(1\right)\)và  \(\left(2\right)\)=) \(\widehat{BOM}\)\(\widehat{ONC}\)

\(X\text{ét}\)\(\Delta OBM\)Và \(\Delta NCO\)có :

         \(\widehat{MBO}\)=  \(\widehat{OCN}\) ( cùng bằng 600 )

      \(\widehat{BOM}\)=  \(\widehat{ONC}\) ( chứng minh trên )

=)   \(\Delta OBM\)đồng dạng với  \(\Delta NCO\)( g-g )

Do \(\Delta OBM\) đồng dạng với  \(\Delta NCO\)

=)   \(\frac{BM}{CO}=\frac{OM}{ON}\)

Mà BO = OC

=) \(\frac{BM}{BO}=\frac{OM}{ON}\)

\(X\text{ét}\)\(\Delta OBM\) Và  \(\Delta NOM\) có :

           \(\frac{BM}{BO}=\frac{OM}{ON}\)

           \(\widehat{B}\)\(=\)\(\widehat{MON}\) (cùng bằng \(60^0\))

  =)  \(\Delta OBM\)đồng dạng với  \(\Delta NOM\) ( c - g - c )

15 tháng 1 2022

Answer:

C O B A N M

a) Ta có:

Góc NOC = 180 độ - góc MON - góc MOB

Góc NOC = 180 độ - góc MBO - góc MOB

Góc NOC = góc BMO

Xét tam giác MBO và tam giác OCN

Góc MBO = góc OCN = 60 độ 

Góc BMO = góc NOC

=> Tam giác MBO ~ tam giác OCN (g-g) 

=> \(\frac{MO}{ON}=\frac{BO}{CN}=\frac{MB}{OC}\)

b) Do O là trung điểm BC => OC = BO

\(\Rightarrow\frac{MO}{ON}=\frac{MB}{OB}\)

\(\Rightarrow\frac{MO}{MB}=\frac{ON}{OB}\)

\(\Rightarrow\frac{OB}{NO}=\frac{MB}{MO}\)

Xét tam giác OBM và tam giác NOM

Góc OBM = góc NOM = 60 độ

\(\frac{MB}{MO}=\frac{OB}{NO}\)

=> Tam giác OBM ~ tam giác NOM (c-g-c)

=> Góc OMB = góc OMN

=> MO là tia phân giác góc BMN

NV
14 tháng 1 2022

a.

a.

\(\widehat{BMO}+\widehat{B}+\widehat{BOM}=\widehat{BOM}+\widehat{MON}+\widehat{CON}=180^0\)

\(\Rightarrow\widehat{BMO}=\widehat{CON}\) (do \(\widehat{B}=\widehat{MON}=60^0\))

\(\Rightarrow\left\{{}\begin{matrix}\widehat{B}=\widehat{C}=60^0\\\widehat{BMO}=\widehat{CON}\end{matrix}\right.\) \(\Rightarrow\Delta OBM\sim\Delta NCO\) (g.g)

b.

Từ câu a \(\Rightarrow\dfrac{OB}{CN}=\dfrac{BM}{OC}\Rightarrow OB.OC=BM.CN\Rightarrow\dfrac{BC}{2}.\dfrac{BC}{2}=BM.CN\Rightarrow...\)

NV
14 tháng 1 2022

c.

Lần lượt kẻ OD và OE vuông góc MN và AB.

Do O cố định \(\Rightarrow\) OE cố định

Từ câu a ta có: \(\dfrac{BM}{OC}=\dfrac{OM}{ON}\Rightarrow\dfrac{BM}{OM}=\dfrac{OC}{ON}=\dfrac{OB}{ON}\) (1)

Đồng thời \(\widehat{B}=\widehat{MON}=60^0\) (2)

(1);(2) \(\Rightarrow\Delta OBM\sim\Delta NOM\left(c.g.c\right)\Rightarrow\widehat{BMO}=\widehat{OMN}\)

\(\Rightarrow\Delta_VOME=\Delta_VOMD\left(ch-gn\right)\)

\(\Rightarrow OD=OE\), mà OE cố định \(\Rightarrow OD\) cố định