K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

a, Chú ý:  K M B ^ = 90 0 và K E B ^ = 90 0 => ĐPCM

b, ∆ABE:∆AKM (g.g)

=>  A E A M = A B A K

=> AE.AK = AB.AM = 3 R 2  không đổi

c, ∆OBC đều 

=>  B O C ⏜ = 60 0 => S =  πR 2 6

31 tháng 3 2020

vgfykgkuy

31 tháng 3 2020

mk bt nhưng mk ko bt

BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DFBÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DFBài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ...
Đọc tiếp

BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DF

BÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DF

Bài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ dài 18 cm tính độ dài MC, MD

Bài 4 cho tam giác ABC cân nội tiếp đường tròn O

A chừng minh AO là đường trung trực của BC

B tính đường cao AH của tam giác ABC biết AC=40cm bán kình đường tròn O = 25 cm

Bài 5 cho đường tròn O đường kính AB dây CD vuông góc AB tại điểm M ,M thuộc OA

gọi I là một điểm thuộc OB .Các tia CI ,DI theo thứ tự cắt dường tròn tại E và F

A Cm tam giác ICD cân

gọi H,K theo thứ tự là chân các đường vuông góc kẻ từ O đến CE DF so sánh OH và OK

giúp mình với mình cảm ơn nhiều 

0
15 tháng 1 2021

Câu 1 : 

Xét ΔCHO vuông tại H , có : cos COH = \(\dfrac{OH}{OC }\)( tỉ số lượng giác ) 

⇔ cos COH = \(\dfrac{R/2}{R}\)=\(\dfrac{1}{2}\)=> \(\widehat{COH }\) = 60 độ 

=> \(\widehat{BC }\) = \(\widehat{COH }\) = 60 độ 

C/m tương tự =>​ \(​​​​\widehat{BD }\) = 60 độ . Ta có \(\widehat{BC }\) + \(​​​​\widehat{BD }\)  = 60 + 60 = 120 độ 

còn lại bạn tự làm nốt nhá 

  
25 tháng 4 2016

o A B M C D I

a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\)  nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.

b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà  \(CM \perp AB\)  nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).

\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)

Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)

Chúc em học tốt ^^

NV
2 tháng 4 2023

a.

\(DH\perp AB\left(gt\right)\Rightarrow\widehat{DHB}=90^0\Rightarrow D;H;B\) cùng thuộc đường tròn đường kính DB

\(\widehat{AEB}=90^0\) (góc nội tiếp chắn nửa đường tròn (O)) \(\Rightarrow\widehat{DEB}=90^0\)

\(\Rightarrow D;E;B\) cùng thuộc đường tròn đường kính DB

\(\Rightarrow\) Tứ giác BHDE nội tiếp đường tròn đường kính DB

b.

\(\widehat{ACB}=90^0\) (góc nội tiếp chắn nửa đường tròn (O))

\(\Rightarrow\widehat{ACH}=\widehat{ABC}\) (cùng phụ \(\widehat{BAC}\))

Mà \(\widehat{ABC}=\widehat{AEC}\) (cùng chắn cung AC của (O)

\(\Rightarrow\widehat{ACH}=\widehat{AEC}\)

Xét hai tam giác ADC và ACE có: \(\left\{{}\begin{matrix}\widehat{ACH}=\widehat{AEC}\left(cmt\right)\\\widehat{CAD}\text{ chung}\end{matrix}\right.\)

\(\Rightarrow\Delta ADC\sim\Delta ACE\left(g.g\right)\Rightarrow\dfrac{AD}{AC}=\dfrac{CD}{EC}\Rightarrow AD.EC=CD.AC\)

c.

Cũng theo cmt \(\Delta ADC\sim\Delta ACE\Rightarrow\dfrac{AC}{AE}=\dfrac{AD}{AC}\Rightarrow AD.AE=AC^2\)

Áp dụng hệ thức lượng trong tam giác vuông ABC với đường cao CH:

\(BC^2=BH.BA\)

\(\Rightarrow AD.AE+BH.BA=AC^2+BC^2=AB^2=2022^2\)

NV
2 tháng 4 2023

loading...