K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

Ta có:IE//BM

Áp dụng hệ quả định lý Ta-lét ta có:\(\dfrac{EI}{BM}=\dfrac{AI}{AM}\)(1)

Ta có:IF//MC

Áp dụng hệ quả định lý Ta-lét ta có:\(\dfrac{FI}{CM}=\dfrac{AI}{AM}\)(2)

Từ (1) và (2) \(\Rightarrow\dfrac{EI}{BM}=\dfrac{IF}{MC}\)

Mà BM=MC(gt) \(\Rightarrow EI=IF\)

 

23 tháng 1 2022

Định lí Talet đko :))

23 tháng 1 2022

A B C M I E F

Vì EI//BM

Áp dụng định lý Talet vào tam giác AEI và tam giác ABM có 

\(\frac{EI}{BM}=\frac{AI}{AM}\)(1)

Tương tự ta được \(\frac{AI}{AM}=\frac{IF}{MC}\)(2)

Từ (1)(2) => \(\frac{EI}{BM}=\frac{IF}{MC}\) 

mà BM = MC

=> EI = IF (đpcm) 

23 tháng 1 2022

Ta có: \(EF//BC\Rightarrow\hept{\begin{cases}EI//BM\left(I;E\in AM,AB\right)\\IF//MC\left(I;F\in AM,AC\right)\end{cases}}\)

Hệ quả định lí Ta-lét: \(\hept{\begin{cases}\frac{EI}{BM}=\frac{AI}{AM}\\\frac{FI}{CM}=\frac{AI}{AM}\end{cases}}\Leftrightarrow\frac{EI}{BM}=\frac{FI}{CM}\)

Mà \(BM=CM\) (vì AM là đường trung tuyến)

\(\Rightarrow EI=FI\)

AK//ME

=>AKME là hình thang

30 tháng 3 2020

Qua K vẽ đường thẳng // với AB cắt AC tại H.

=> AHKD là hình bình hành => DK = AH (1)

Gọi giao điểm của AK và DH là O. Vì AHKD là HBH => DO = OH

Xét 3 đường thẳng MA, CA, BA đồng quy tại A cắt 2 đường thẳng DH và BC ta được: DO/OH = BM/MC = 1

=> DH // BC (định lí chùm đường thẳng đồng quy đảo)

Xét ∆ ADH và ∆ FEC có: 

AD = EF ( t/c đoạn chắn) ; DH = EC (t/c đoạn chắn) ; ^ADH = ^FEC => ∆ ADH = ∆ FEC (c-g-c)

=> AH = CF (2)

Từ (1) và (2) => CF = DK (đpcm)

GL

31 tháng 3 2020

Do EF//AB⇒\(\frac{CF}{CA}=\frac{EF}{AB}\)\(\frac{CF}{EF}=\frac{AC}{AB}\)(1)

Dựng MG//AC và MM là trung điểm cạnh BC

⇒GM là đường trung bình ΔABC

=⇒G là trung điểm cạnh AB ⇒AG=BG

Do DK//GM⇒\(\frac{AD}{AG}=\frac{DK}{GM}\)\(\frac{AD}{BG}=\frac{DK}{GM}\)

=> \(\frac{DK}{AD}=\frac{GM}{BG}=\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\frac{CF}{EF}=\frac{DK}{AD}\)

Mà tứ giác ADEF là hình bình hành (vì EF//AD và DE//AF) nên AD=EF

=> CF=DK (đpcm)
Nguồn: thuynga

22 tháng 2 2020

a, Vì △ABC cân tại A => AB = AC và ABC = ACB

Xét △ABD và △ACE

Có: AB = AC (cmt)

    ABD = ACE (cmt)

       BD = CE(gt)

=> △ABD = △ACE (c.g.c)

b, Xét △AHD vuông tại H và △AIE vuông tại I

Có: AD = AE (△ABD = △ACE)

    HAD = IAE (△ABD = △ACE)

=>  △AHD = △AIE (ch-gn)

=> HD = IE (2 cạnh tương ứng)

c, Xét △AHI có: AH = AI (△AHD = △AIE) => △AHI cân tại A => AHI = (180o - HAI) : 2       (1)

Vì △ABC cân tại A => ABC = (180o - BAC) : 2         (2)

Từ (1) và (2)  => AHI = ABC

Mà 2 góc này nằm ở vị trí đồng vị 

=> HI // BC (dhnb)

d, Gọi { O } = HD ∩ EI

Xét △BAM và △CAM

Có: AB = AC (cmt)

      MB = MC (gt)

   AM là cạnh chung

=> △BAM = △CAM (c.c.c)

=> BAM = CAM (2 góc tương ứng)

Mà AM nằm giữa AB, AC 

=> AM là phân giác của BAC

Xét △HAO vuông tại H và △IAO vuông tại I

Có: AH = AI (cmt) 

      AO là cạnh chung

=> △HAO = △IAO (ch-cgv)

=> HAO = IAO (2 góc tương ứng)

=> AO là phân giác của BAC

Mà AM là phân giác của BAC

=> AO ≡ AM

=> 3 điểm A, M, O thẳng hàng

=> Ba đường thẳng AM, DH, EI cắt nhau tại một điểm. 

4 tháng 3 2022

gọi O là j thế anh