K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác ABC cân tại A , góc A nhọn. Đường cao BD và CE cắt nhau tại H, vẽ điểm M là trung điểm của BC. Cm:                                                                                a)BD = CE.                                                                                                                                b)ED // BC.                                                                                                                              c)Giao...
Đọc tiếp

Cho tam giác ABC cân tại A , góc A nhọn. Đường cao BD và CE cắt nhau tại H, vẽ điểm M là trung điểm của BC. Cm:                                                                                a)BD = CE.                                                                                                                                b)ED // BC.                                                                                                                              c)Giao điểm A, H, M thẳng hàng.                                                                                              d)ED < BC.

1
16 tháng 7 2021

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:

AB = AC (ΔABC cân tại A)

∠BAD chung

⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn)

⇒ BD = CE (hai cạnh tương ứng)

Vậy BD = CE

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔMAD và ΔMBH có

góc MAD=góc MBH

MA=MB

góc AMD=góc BMH

=>ΔMAD=ΔMBH

=>AD=BH

mà AD//BH

nên ADBH là hình bình hành

=>BD=AH

3 tháng 12 2016

a) là hình bình hành (chứng minh theo dấu hiệu: tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành)

b) Áp dụng: trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bẳng nửa cạnh huyền.

*gợi ý: 2 tam giác vuông ABI và ACI =>  OB = OC ( = AI/2)

c) ko biết nữa

6 tháng 4 2017

a b c m d h e

câu a

tam giác abc cân a

=> ab = ac (tính chất)

tam giác abe và tam giác acd có

chung góc a

ab=ac

ad=ae

=> tam giác abe = tam giác acd (cgc)

câu b

từ câu a

=> góc e = góc d

mà góc e = 90 độ

=> góc d = 90 độ

=> cd là đưòng cao

tam giác abc có đưòng cao be và cd giao tại h

=> h là trực tâm

câu c

từ câu b

=> ah là đường cao

=> ah đồng thời là đường trung tuyến

mà am là đường trung tuyến

=> ah trùng am

=> a,m,h thẳng hàng

câu d

tam giác cbd vuông tại d có dm là đưòng trung tuyến ứng với cạnh huyền bc

\(dm=\dfrac{bc}{2}\\ =>bc=2.dm\)

chúc may mắn :)

9 tháng 2 2019

a, Xét \(\Delta\)ABD và \(\Delta\)ACE có:

              AB=AC( tam giác ABC cân tại A)

              \(\widehat{A}\)chung

\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE( CH-GN)

b, vì \(\Delta\)ABD=\(\Delta\)ACE\(\Rightarrow\)AD=AE\(\Rightarrow\)tam giác AED cân tại A

9 tháng 2 2019

A B C E D H I K

Cm: Xét t/giác ABD và t/giác ACE

có góc CEA = góc BDA = 900 (gt)

   AB = AC (gt)

 góc A : chung

=> t/giác ABD = t/giác ACE (ch - gn)

b) Ta có: t/giác ABD = t/giác ACE (cmt)

=> AE = AD (hai cạnh tương ứng)

=> t/giác AED là t/giác cân tại A

c) Gọi I là giao điểm của AH và ED.

Ta có: AE + EB = AB

       AD + DC = AC

và AB = AC (gt); AE = AD (cmt)

=> EB = DC 

Do t/giác ABD = t/giác ACE (cm câu a)

=> góc ABD = góc ACE (hai cạnh tương ứng)

Xét t/giác EHB và t/giác DHC

có góc BEH = góc HDC (gt)

  EB = DC (cmt)

  góc EBH = góc HCD (cmt)

=> t/giác BEH = t/giác DHC (g.c.g)

=> EH = DH (hai cạnh tương ứng)

Xét t/giác AEH và t/giác ADH

có AE = AD (cmt)

 góc AEH = góc ADH (gt)

 EH = DH (cmt)

=> t/giác AEH = t/giác ADH (c.g.c)

=> góc EAH = góc DAH (hai góc tương ứng)

Xét t/giác AEI và t/giác ADI

có góc EAI = góc DAI (cmt)

  AE = AD (cmt)

 góc AEI = góc ADI (vì t/giác AED cân)

=> t/giác AEI = t/giác ADI (g.c.g)

=> EI = HD (hai cạnh tương ứng) (1)

=> góc AIE = góc AID (hai góc tương ứng)

Mà góc AEI + góc AID = 1800 (kề bù)

=> 2.góc AEI = 1800

=> góc AEI = 1800 : 2

=> góc AEI = 900

=> AI \(\perp\)ED (2)

Từ (1) và (2) suy ra AI là đường trung trực của ED hay AH là đường trung trực của ED

d) Sửa đề Cm : góc ECB = góc DKC

Ta có: góc BDC + góc KDC = 1800

=> góc KDC = 1800 - góc BDC = 1800 - 900 = 900

Xét t/giác BDC và t/giác KDC

có BD = DK (gt)

 góc BDC = góc KDC = 900 (Cmt)

 DC : chung

=> t/giác BDC = t/giác KDC (c.g.c)

=> góc K = góc DBC (hai góc tương ứng) (3)

Xét t/giác BEC và t/giác CDB

có góc BDC = góc CDB = 900 (gt)

    BC : chung

  góc B = góc C (vì t/giác ABC cân)

=> t/giác BEC = t/giác CDB (ch -gn)

=> góc BDE = góc DBC (hai góc tương ứng) (4)

Từ (3) và (4) suy ra góc ECB = góc DKC 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đó: ΔABD=ΔACE
Suy ra: AD=AE

b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)

d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H

=>HB=HC

hay H nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,H,M thẳng hàng