cho a,b,c là số thực dương thỏa mãn
: 2(a+b+c)+ab+bc+ca=9
tìm Max \(A=\dfrac{a+1}{a^2+10a+21}+\dfrac{b+1}{b^2+10b+21}+\dfrac{c+1}{c^2+10c+21}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)
\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)
\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)
\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)
\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$
$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)
BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)
Ta có:
\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)
\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)
Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)
\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)
Cộng vế với vế:
\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
https://hoc24.vn/cau-hoi/cho-abc-0-thoa-man-abbcca3-tim-gia-tri-nho-nhat-cua-pdfrac13a1b2dfrac13b1c2dfrac13c1a2.6181078378966
\(\Leftrightarrow\left(1+ab+bc+ca\right)\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(a+b\right)\left(b+c\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\le\dfrac{ab+bc+ca}{abc}\)
\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)
\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)
Áp dụng BĐT quen thuộc:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)=\dfrac{8}{9}\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\)
Ta chỉ cần chứng minh:
\(\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\le\dfrac{ab+bc+ca}{abc}\)
\(\Leftrightarrow4\left(ab+bc+ca\right)^2\ge9abc+9abc\left(ab+bc+ca\right)\)
Do \(3\left(ab+bc+ca\right)^2\ge9abc\left(a+b+c\right)=9abc\)
Nên ta chỉ cần chứng minh:
\(\left(ab+bc+ca\right)^2\ge9abc\left(ab+bc+ca\right)\)
\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
Hiển nhiên đúng do \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)
Đặt\(P=\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2+}+\dfrac{1}{2}\left(ab+bc+ca\right)\)
Bổ đề: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\) \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) (1)
Chứng minh bổ đề: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\sqrt[3]{abc.\dfrac{1}{abc}}=9\left(\forall a,b,c\ge0\right)\)
Kết hợp điều kiện đề bài ta được: \(a+b+c\ge3\)
Ta có: \(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2\sqrt{b^2}}=\dfrac{ab}{2}\) ( AM-GM cho 2 số không âm 1 và b^2 )
\(\Rightarrow\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\left(1\right)\)
Chứng minh hoàn toàn tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2}\left(2\right)\)
\(\dfrac{c}{1+a^2}\ge c-\dfrac{ca}{2}\left(3\right)\)
Cộng (1),(2),(3) vế theo vế thu được: \(P\ge a+b+c=3\)
Dấu "=" xảy ra tại a=b=c=1
Mẫu số to quá nên ko nghĩ ra cách giải đẹp mắt:
Dự đoán dấu "=" xảy ra tại \(a=b=c=1\), ta cần c/m: \(A\le\dfrac{3}{16}\)
Do \(\sum\dfrac{a+1}{a^2+1+10a+20}\le\sum\dfrac{a+1}{2a+10a+20}=\sum\dfrac{a+1}{12a+20}\)
Nên ta chỉ cần chứng minh: \(\sum\dfrac{a+1}{3a+5}\le\dfrac{3}{4}\Leftrightarrow\sum\left(\dfrac{3a+3}{3a+5}-1\right)\le\dfrac{9}{4}-3\)
\(\Leftrightarrow\sum\dfrac{1}{3a+5}\ge\dfrac{3}{8}\Leftrightarrow\dfrac{3\left(ab+bc+ca\right)+10\left(a+b+c\right)+25}{\left(3a+5\right)\left(3b+5\right)\left(3c+5\right)}\ge\dfrac{1}{8}\) (quy đồng)
\(\Leftrightarrow\dfrac{4\left(a+b+c\right)+3\left(ab+bc+ca+2\left(a+b+c\right)\right)+25}{27abc+45\left(ab+bc+ca+2\left(a+b+c\right)\right)-15\left(a+b+c\right)+125}\ge\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4\left(a+b+c\right)+52}{27abc-15\left(a+b+c\right)+530}\ge\dfrac{1}{8}\)
\(\Leftrightarrow47\left(a+b+c\right)\ge27abc+114\)
Điều này đúng do:
\(9=2\left(a+b+c\right)+ab+bc+ca\le2\left(a+b+c\right)+\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow\left(a+b+c-3\right)\left(a+b+c+9\right)\ge0\)
\(\Rightarrow a+b+c\ge3\)
Và: \(9=a+b+c+a+b+c+ab+bc+ca\ge9\sqrt[9]{a^4b^4c^4}\)
\(\Rightarrow abc\le1\)
\(\Rightarrow\left\{{}\begin{matrix}47\left(a+b+c\right)\ge141\\27abc+114\le27+114=141\end{matrix}\right.\) (đpcm)