cho tam giác abc ,trên ab lấy m sao cho am=bm. trên ac lấy n sao cho an=nc. nối c với m, b với n.
nối a với i, kéo dài ai cắt bc tại p. chứng tỏ p là điểm chính giữa đoạn bc.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có
\(NC=2AN\Rightarrow\dfrac{AN}{AC}=\dfrac{1}{3}\)
Hai tg ABN và tg ABC có chung đường cao từ B->AC nên
\(\dfrac{S_{ABN}}{S_{ABC}}=\dfrac{AN}{AC}=\dfrac{1}{3}\Rightarrow S_{ABN}=\dfrac{1}{3}xS_{ABC}\)
Hai tg DBN và tg DCN có chung đường cao từ D->BC và BM=CM nên
đường cao từ B->DM = đường cao từ C->DM
Hai tg DNA và tg DNC có chung đường cao từ D->AC nên
\(\dfrac{S_{DNA}}{S_{DNC}}=\dfrac{AN}{CN}=\dfrac{1}{2}\)
Hai tg này lại có chung DN nên
\(\dfrac{S_{DNA}}{S_{DNC}}=\) đường cao từ A->DM / đường cao từ C->DM \(=\dfrac{1}{2}\)
=> đường cao từ A->DM / đường cao từ B->DM \(=\dfrac{1}{2}\)
Hai tg DNA và tg DBN có chung DN nên
\(\dfrac{S_{DNA}}{S_{DBN}}=\) đường cao từ A->DM / đường cao từ B->DM \(=\dfrac{1}{2}\)
\(\Rightarrow S_{DBN}=2xS_{DNA}\)
\(\Rightarrow S_{DNA}=S_{DBN}-S_{ABN}=2xS_{DNA}-S_{DBN}\Rightarrow S_{DNA}=S_{ABN}=\dfrac{1}{3}xS_{ABC}=\dfrac{10}{3}cm^2\)
b/
Hai tg DNB và tg DNC có chung DN và đường cao từ B->DM = đường cao từ C->DM nên
\(S_{DNB}=S_{DNC}\)
c/ Hai tg DNA và tg ABN có chung đường cao từ N->DB nên
\(\dfrac{S_{DNA}}{S_{ABN}}=\dfrac{AD}{AB}=1\)
hai tg ABM và tg ABC có chung đường cao từ A->BC nên
\(\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{BM}{BC}=\dfrac{1}{5}\Rightarrow S_{ABM}=\dfrac{1}{5}xS_{ABC}\)
\(\Rightarrow S_{ACM}=S_{ABC}-S_{ABM}=S_{ABC}-\dfrac{1}{5}xS_{ABC}=\dfrac{4}{5}xS_{ABC}\)
Hai tg AMI và tg ACM có chung đường cao từ M->AC nên
\(\dfrac{S_{AMI}}{S_{ACM}}=\dfrac{AI}{AC}=\dfrac{1}{2}\Rightarrow S_{AMI}=\dfrac{1}{2}xS_{ACM}=\dfrac{1}{2}x\dfrac{4}{5}xS_{ABC}=\dfrac{2}{5}xS_{ABC}\)
Hai tg ABM và tg AMI có chung AM nên
\(\dfrac{S_{ABM}}{S_{AMI}}=\) đường cao từ B->AM / đường cao từ I->AM =\(\dfrac{1}{5}xS_{ABC}:\dfrac{2}{5}xS_{ABC}=\dfrac{1}{2}\Rightarrow S_{AMI}=2xS_{ABM}=2x\dfrac{1}{5}xS_{ABC}=\dfrac{2}{5}xS_{ABC}\)
Hai tg BCI và tg ABC có chung đường cao từ B->AC nên
\(\dfrac{S_{BCI}}{S_{ABC}}=\dfrac{CI}{AC}=\dfrac{1}{2}\Rightarrow S_{BCI}=\dfrac{1}{2}xS_{ABC}\)
Hai tg BMI và tg BCI có chung đường cao từ I->BC nên
\(\dfrac{S_{BMI}}{S_{BCI}}=\dfrac{BM}{BC}=\dfrac{1}{5}\Rightarrow S_{BMI}=\dfrac{1}{5}xS_{BCI}=\dfrac{1}{5}x\dfrac{1}{2}xS_{ABC}=\dfrac{1}{10}xS_{ABC}\)
Hai tg BMN và tg IMN có chung MN nên
\(\dfrac{S_{BMN}}{S_{IMN}}=\)đường cao từ B->AM / đường cao từ I->AM\(=\dfrac{1}{2}\)
\(\Rightarrow S_{IMN}=\dfrac{2}{3}xS_{BMI}=\dfrac{2}{3}x\dfrac{1}{10}xS_{ABC}=\dfrac{1}{15}xS_{ABC}\)
\(\Rightarrow\dfrac{S_{IMN}}{S_{AMI}}=\dfrac{1}{15}xS_{ABC}:\dfrac{2}{5}xS_{ABC}=\dfrac{1}{6}\)
Hai tg IMN và tg AMI có chung đường cao từ I->AM nên
\(\dfrac{S_{IMN}}{S_{AMI}}=\dfrac{MN}{AM}=\dfrac{1}{6}\Rightarrow MN=\dfrac{1}{6}xAM=\dfrac{1}{6}x18=3cm\)
Nối A với D; B với N
+) Xét tam giác NMA và NBM có chung chiều ao hạ từ N xuống AB; AM = BM
=> S(NMA) = S(NBM)
=> chiều cao hạ từ A xuống MN = Chiều cao hạ từ B xuống MN ( vì chung đáy MN)
=> S(AND) = S(BND) ( Vì chung đáy ND)
+) Xét tam giác DCN và DAN có chung chiều cao hạ từ D xuống AC; đáy CN = 1/2 đáy AN
=> S(DCN) = 1/2 S(DAN)
=> S(DCN) =1/2 S(BND) => S(DCN) = S(BCN) => đáy BC = CD ( vì chung chiều cao hạ từ N xuống BC)