K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

Tick , rồi mình trả lời cho

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\)(1)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)

Do đó: ΔADE\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{ADE}=\widehat{ACB}\)(hai góc tương ứng)

26 tháng 2 2020

A B E O C D M

a) Xét \(\Delta\)MDC và  \(\Delta\)MAB có: MC = MB (gt)  ; ^CMD = ^BMA ( đối đỉnh ) ; MD = MA

=> \(\Delta\)MDC = \(\Delta\)MAB  => AB = DC ; ^MBA = ^MCD mà hai góc này ở vị trí so le trong => AB // CD

b) ^MBA = ^MCD  mà ^MBA + ^MCA = 90o => ^MCD + ^MCA = 90o => ^ACD = 90o 

Xét \(\Delta\)ABC và \(\Delta\)CDA có:  AB = CD ( theo a) ; ^ACD = ^CAB ( =90o ) ; AC chung 

=> \(\Delta\)ABC = \(\Delta\)CDA => BC = AD  => AM =AD/2 =  BC/2

c) \(\Delta\)ABC = \(\Delta\)CDA => ^ACB = CAD (1)

Lại có: \(\Delta\)BCE  có: BA vuông CE; A là trung điểm EC => \(\Delta\)CBE cân => ^ACB = ^AEB  (2)

Từ (1); (2) => ^CAM = ^CEB  mà hai góc ở vị trí đồng vị => AM//EB

d) Để AC = BC/2 => AC = AM = CM =>\(\Delta\)AMC đều => ^ACB = ^ACM = 60o 

=> \(\Delta\)ABC vuông tại A có điều kiện ^C = 60o 

e) \(\Delta\)EBC cân tại B  ( đã chứng minh ở câu c) => BE = BC  mà BC = AD (đã chứng minh ở câu b)

=> BE = AD  

^DAO = ^^OBE ( so le trong ; AM // BE ) 

AO = OB ( O là trung điểm AB )

=> \(\Delta\)AOD = \(\Delta\)BOE => ^AOD = ^BOE mà ^AOD + ^DOB = ^AOB = 180 độ => ^DOB + ^BOE = 180 độ => ^DOE = 180 độ

=> D; O; E thẳng hàng.

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

mà góc BAC=90 độ

nên ABDC là hình chữ nhật

b,d: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: góc AFE=góc AHE=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc ACB

=>góc MAC+góc EFA=90 độ

=>AM vuông góc với EF

c: Xét ΔADI có

H,M lần lượt là trung điểm của AI và AD

nên HM là đường trung bình

=>HM//DI

=>DI//BC

Xét ΔCIA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCIA cân tại C

=>CI=CA=DB

=>BIDC là hình thang cân

2 tháng 7 2016

a/Ta có : M là Trung điểm của AD

            N là trung diểm của BC

\(\Rightarrow\)MN là dường trung bình của hình thang

Theo định lí dường trung bình của hình thang( học tới đó thì cm minh ngay) 

Thì MN=(AB+CD)/2

b/k có câu nào cho cm như vậy hết

a) Xét tứ giác ADMB có 

I là trung điểm của đường chéo AB(gt)

I là trung điểm của đường chéo MD(M và D đối xứng nhau qua I)

Do đó: ADMB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒AD//BM(Hai cạnh đối trong hình bình hành ADMB)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(BM=CM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM=CM

Hình bình hành ADBM có AM=BM(cmt)

nên ADBM là hình thoi(Dấu hiệu nhận biết hình thoi)

b) Sửa đề: E là giao điểm của AM và CD

Xét ΔABC có 

M là trung điểm của BC(gt)

I là trung điểm của AB(gt)

Do đó: MI là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MI//AC và \(MI=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà D∈MI và \(MI=\dfrac{MD}{2}\)(I là trung điểm của MD)

nên MD//AC và MD=AC

Xét tứ giác ACMD có 

MD//AC(cmt)

MD=AC(cmt)

Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AM và CD cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AM cắt CD tại E(gt)

nên E là trung điểm của AM

hay AE=EM(Đpcm)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=5^2-4^2=9\)

hay AB=3(cm)

Ta có: \(MI=\dfrac{AC}{2}\)(cmt)

mà AC=4(cm)

nên \(MI=\dfrac{4}{2}=2\left(cm\right)\)

Xét ΔAMB có MI là đường cao ứng với cạnh AB(gt)

nên \(S_{ABM}=\dfrac{MI\cdot AB}{2}=\dfrac{2\cdot3}{2}=3\left(cm^2\right)\)

16 tháng 12 2022

a: D đối xứng với M qua AB

nên DM vuông góc với AB tại trung điểm của DM

=>E là trung điểm của DM và AB là phân giác của góc DAM(2)

=>AD=AM; BD=BM

mà DA=DB

nên AD=AM=BD=BM

D đối xứng với N qua AC

nên AC vuông góc với DN tại trung điểm của DN

=>AC là phân giác của góc NAD(1)  và F là trung điểm của DN

Xét tứ giác AEDF có 

góc AED=góc AFD=góc FAE=90 độ

nên AEDF là hình chữ nhật

b: Từ (1), (2) suy ra góc MAN=2*90=180 độ

=>M,A,N thẳng hàng

mà AM=AN

nên A là trung điểm của MN

c: Để AEDF là hình vuông thì AD là phân giác của góc FAE

mà AD là trung tuyến ứng với BC

nên ΔABC cân tại A

=>AB=AC