Cho tam giác ABC vuông tại A có đường cao AH. Kẻ phân giác AI của góc BAH (I thuộc BC).
a) Chứng minh tam giác AIC cân tại C.
b) Trên tia đối HA lấy D sao cho HA = HD. Chứng minh DI là phân giác của góc BDA.
c) Từ B kẻ đường thẳng vuông góc với ID cắt AD tại N. Chứng minh NI // CD.
a: \(\widehat{CAI}+\widehat{BAI}=90^0\)
\(\widehat{CIA}+\widehat{HAI}=90^0\)
mà \(\widehat{BAI}=\widehat{HAI}\)
nên \(\widehat{CAI}=\widehat{CIA}\)
hay ΔCIA cân tại C
b: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
Xét ΔIAD có
IH là đường cao
IH là đường trung tuyến
Do đó: ΔIAD cân tại I
Ta có: \(\widehat{IDA}=\widehat{IAD}\)
\(\widehat{IDB}=\widehat{IAB}\)
mà \(\widehat{IAD}=\widehat{IAB}\)
nên \(\widehat{IDA}=\widehat{IDB}\)
hay DI là tia phân giác của góc BDA