cho hai hình bình hành ABCD đường chéo BD . gọi M,N lần lượt là trung điểm các cạnh AB và AD. tìm tỉ số diện tích của tam giác AMN và tam giác ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ADB có : M là trung điểm của AB(gt)
N là trung điểm của AD(gt)
=> MN là đường trung bình của tam giác ADB ( đ/n)
=> MN//DB và MN =1/2 DB ( t/c)
Xét tam giác AMN và tam giác ABD có : MN // BD ( cmt)
tam giác AMN đồng dạng với tam giác ABD ( hq đ/y ta lét) => SAMN/SABD=(1/2)^2=1/4 (1)
Xét tam giác ABD và tam giác CDBcó
AB=CD( ABCD là hbh )
góc A = góc C (nt)
AD=cb(nt)
=> tam giác ABD = tam giác CDB (cgc)
=> tam giác ABD đồng dạng tam giác CDB(t/c)
=> tam giác ABD=1/2 HBh ABCD(2)
Từ 1 2 => SAMN/SABCD=1/8
Vẽ AH⊥BC⊥BC cắt MN tại H'
Ta có : AH'=HH'=12AH12AH(vì MN là trung điểm => AH′=12AHAH′=12AH)
Lại có:
SABC=12.AH.BC=60cm2SABC=12.AH.BC=60cm2 và SAMN=12AH′.MNSAMN=12AH′.MN.Mà
MN là đường trung bình của tam giác ABC=>MN=12BCMN=12BC
=>SAMN=12.12AH.12BC=14(12AH.BC)=12.60=15(cm2)SAMN=12.12AH.12BC=14(12AH.BC)=12.60=15(cm2)
Vậy SAMN=15cm2
a) Xét tam giác ABD có :
M là trung điểm của AB
F là trung điểm của BD
=) MF là đường trung bình của tam giác ABD
=) MF//AD và MF=\(\frac{1}{2}\)AD (1)
Xét tam giác tam giác ACD có :
N là trung điểm CD
E là trung điểm AC
=) NE là đường trung bình của tam giác ACD
=) NE//AD và NE=\(\frac{1}{2}\)AD (2)
Từ (1) và (2) =) Tứ giác MENF là hình bình hành
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD