Cho C=1+3+32+33+...+311. Chứng tỏ rằng C chia hết cho 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(=4\left(1+...+3^{10}\right)⋮4\)
a, C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 + 3 5 +...+ 3 9 + 3 10 + 3 11
= 1 + 3 1 + 3 2 + 3 3 . 1 + 3 1 + 3 2 + ... + 3 9 1 + 3 1 + 3 2
= 1 + 3 1 + 3 2 . 1 + 3 3 + . . . + 3 9
= 13. 1 + 3 3 + . . . + 3 9 ⋮ 13
b, C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 + 3 10 + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 1 + 3 1 + 3 2 + 3 3 + 3 8 1 + 3 1 + 3 2 + 3 3
= 1 + 3 1 + 3 2 + 3 3 . 1 + 3 4 + 3 8
= 40. 1 + 3 4 + 3 8 ⋮ 40
\(C=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13\cdot\left(1+...+3^9\right)⋮13\)
C=1+3+32+33+...+311=(1+3+32+33)+...+(38+39+310+311)=40(1+...+6561)
Do có thừa số là 40 nên C chia hết cho 40
*Chú ý:Do 38+39+310+311 tính máy tính rồi chia cho 40 được nên tui mới viết 6561 còn nếu số lớn hơn nữa thì cứ viết 1+...+đề bài cho gì sau đó chia cho số mà phải chứng minh chia hết
VD: bla..bla+340+341+342+343(...+...)+....+(340+341+342+343)=m.[1+....+(340+341+342+343):40]