K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

thay x = 2y ta có;

A=( 2.2y - y)/2y+2y = 3/4

30 tháng 11 2019

a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)

\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`

\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)

\(=\frac{-x^2-2x-1+x^2}{x+1}\)

\(=\frac{-2x-1}{x+1}\)(1)

b) Thay \(x=-3,y=2014\)vào (1) ta được:

\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)

Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014

23 tháng 5 2021

a) Thay `x=1/2` vào A được:

`A=(5. 1/2 -7)(2. 1/2 +3)-(7 . 1/2 +2)(1/2 -4)=5/4`

b) Thay `x=2;y=-2` vào B được:

`B=(2+2.2)(-2-2.2)+(2-2.2)(-2+2.2)=-40`.

23 tháng 5 2021

a) Với \(x=\dfrac{1}{2}\) ta được:

\(\Leftrightarrow A=\left(\dfrac{5.1}{2}-7\right)\left(\dfrac{2.1}{2}+3\right)-\left(\dfrac{7.1}{2}+2\right)\left(\dfrac{1}{2}-4\right)\)

\(\Leftrightarrow A=-\dfrac{9}{2}.4-\dfrac{11}{2}.\left(-\dfrac{7}{2}\right)\)

\(\Rightarrow A=\dfrac{5}{4}\)

 

9 tháng 2 2020

Ta có : \(x^2+3y^2=4xy\)

\(\Leftrightarrow\left(x^2-xy\right)+\left(3y^2-3xy\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=y\\x=3y\end{cases}}\)

Với \(x=y\) thì \(A=\frac{2x+3x}{x-2x}=-5\)

Với \(x=3y\) thì \(A=\frac{6y+3y}{3y-2y}=9\)

9 tháng 2 2020

Ta có:

\(x^2+3y^2=4xy\Leftrightarrow\left(x^2-3xy\right)-\left(xy-3y^2\right)=0\Leftrightarrow\left(x-3y\right)\left(x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3y\\x=y\end{cases}}\)

TH1: x=3y

\(A=\frac{6y+3y}{3y-2y}=\frac{9y}{y}=9\)

TH2: x=y
\(A=\frac{2x+3x}{x-2x}=\frac{5x}{-x}=-5\)

3x^2+3y^2+4xy-2x+2y+2=0

=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0

=>x=1 và y=-1

M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1

24 tháng 9 2016

ta có 2x2+2y2=5xy

=>2(x+y)2=9xy và 2(x-y)2=xy

M2=\(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{9xy}{xy}=9\)

vậy M=3 hoặc M=-3

25 tháng 9 2016

Ta dùng phương pháp tách đa thức thành nhân tử ta được

=> x+y=2x2+2y2=2(x2+y2)=9xy

=> x-y=2x2-2y2=2(x2-y2)=xy=1xy=xy

=>M=(x+y)2/(x-y)2=9xy:xy=9

Nên M= cộng trừ căn bậc 2 của 9

23 tháng 10 2021

939393:3=313131 nhoa bẹn

23 tháng 10 2021

a) \(A=\left(x-y\right).\left(x^2+x+y\right)-x.\left(2x^2+2y^3\right)\)

\(=x^3+x^2+xy-x^2y-xy-y^2-2x^3-2xy^3\)

\(=-x^3-y^2-2xy^3\)

b) Ta thay \(x=-1;y=-5\)

\(-x^3-y^2-2xy^3\)

\(=-\left(-1\right)^3-\left(-5\right)^2-2.\left(-1\right).\left(-5\right)^3\)

\(=1-25-250\)

\(=-274\)