1. Cho tam giác ABC nhọn có trực tâm là H. Chứng minh rằng HA+HB+HC < AB+AC. Từ đó suy ra: HA+HB+HC < 2/3(AB+AC +BC)
2. CMR: d^3 + (d^2)f - def + (e^2)f + e^3 = 0 nếu d+e+f=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Qua H kẻ HG//AB cắt AC tại G; kẻ HI//AC cắt AB tại I như hình vẽ.
=> HI vuông BH ; CH vuông HG
và AIHG là hình bình hành
Xét tam giác BHI vuông tại H => BH<BI ( mối quan hệ cạnh góc vuông và cạnh huyền) (1)
Xét tam giác CHG vuông tại H => CH<CG
=> CH+BH + AH< BI+CG +AH
Ta lại có AH <AI+IH ( bất đẳng thức trong tam giác AIH)
mà IH=AG ( AIHG là hình bình hành theo cách vẽ )
=> AH < AI+AG
Vậy CH+BH+AH<BI+CG+AI+AG=AB+AC
b) Chứng minh AB+AC+BC>3/2 (HA+HB+HC)
Chứng minh tương tự như câu a.
Ta có: \(AB+AC>HA+HB+HC\)
\(BC+AC>HA+HB+HC\)
\(AB+BC>HA+HB+HC\)
Cộng theo vế ta có:
\(2AB+2AC+2BC>3HA+3HB+3HC\)
=> \(2\left(AB+AC+BC\right)>3\left(HA+HB+HC\right)\)
=> \(AB+AC+BC>\frac{3}{2}\left(HA+HB+HC\right)\)
Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Tam giác ABC có : góc ABC > góc ACB (gt)
=> AC > AB (đl)
AD _|_ BC (gt)
D thuộc BC
=> BD < DC
H thuộc AD
=> HB < HC
b, AD; BE là đường cao
ADcắt BE tại H
=> CH là đường cao (đl)
=> CH _|_ AB (đn)
HF _|_ AB (gt)
=> C; H; F thẳng hàng
c.
\(AB>AD;AC>AD\left(ch>cgv\right)\)
\(\Rightarrow AB+AC>2AD\left(đpcm\right)\)
d
Kẻ \(HN//AC;HM//AB\)
Theo tính chất cặp đoạn chắn,ta có:\(HM=AN\)
Áp dụng bất đẳng thức tam giác ta có:
\(HA< AM+HM=AM+AN\left(1\right)\)
Do \(BH\perp AC;HN//AC\Rightarrow NH\perp HN\)
Xét \(\Delta BHN\) ta có:\(BH< BN\left(2\right)\)
Tương tự trong tam giác CHM có \(CH< CM\left(3\right)\)
Tiừ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow HA+HB+HC< AM+AN+BN+CM=AB+AC\)
Tương tự,ta có:
\(HA+HB+HC< AB+BC\)
\(HA+HB+HC< BC+AC\)
\(\Rightarrow3\left(HA+HB+HC\right)< 2\left(AB+BC+CA\right)\)
\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+BC+CA\right)\)