K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

5/a=1/6+b/3

5/a=1/6+2b/6

5/a=(1+2b)/6

a x (1+2b)=5x6=30

-->a và 1+2b thuộc ước của 30

Mà a và b là các số nguyên dương nên a và 1+2b thuộc tập hợp 1;2;3;5;6;10;15;30

Vì a và b là các số nguyên dương;a x (1+2b)=30 nên ta có bảng:

a12356101530
1+2b30151065321
bkhông có giá trị của b7không có giá trị của bkhông có giá trị của b21không có giá trị của b0
Kết luậnLOẠICHỌNLOẠILOẠICHỌNCHỌNLOẠI

CHỌN

Vậy a thuộc tập hợp 2;6;10;30

       b thuộc tập hợp 7;2;1;0

19 tháng 4 2016

a=6       b=2

23 tháng 4 2018

2S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

      = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)

      =\(1-\frac{1}{15}=\frac{14}{15}\)

\(\Rightarrow S=\frac{7}{15}\)

23 tháng 4 2018

a. Ta có:A= 1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15

A=1/2(1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)

A=1/2(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15)

A=2(1-1/15)

A=1/2.14/15

A=7/15

13 tháng 12 2017
a
27 tháng 7 2018

5/2-2/3=1/6

2 tháng 3 2020

5/9 - 4/3 = 1/6

6 tháng 5 2016

\(\frac{a}{3}\)=\(\frac{1}{a+b}\)

a(a+b)=3=1.3( vì a b nguyên dương không lấy giá trị âm)

th1 a=1 => a+b=3 => b=2

TH2 a=3 => a+b=1 => b= -2 loại

6 tháng 5 2016

\(\frac{a}{3}=\frac{1}{a+b}\)

a(a + b) = 3 = 3 . 1 = (-3) . (-1)

TH1: a=  3 

3 + b = 1 => b=  -2

TH2: a = 1

1 + b = 3 => b = 2

TH3: a = -1

-1 + b = -3 => b = -2

TH4: a = -3

-3 + b = -1 => b = 2

vậy (a ; b) = (3 ; -2) ; (1 ; 2) ; (-1 ; -2) ; (-3 ; 2) 

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

1 tháng 1 2021

Đặt bđt là (*)

Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :

\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)

\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)

Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)

Hay \(n\le2\)

Với n=2 . Thay vào (*) : ta cần CM BĐT 

\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)

Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Tương tự ta có:

\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)

Ta cần CM: 

\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)

=> đpcm

Dấu '=' xảy ra khi a=b=c

=> số nguyên dương lớn nhất : n=2( thỏa mãn)