K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

hay BM=CM

b: Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có 

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

d: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có

MB=MC

MH=MK

Do đó: ΔBHM=ΔCKM

19 tháng 1 2022

Tham khảo:
 

a: Ta có: ΔABC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

hay BM=CM

b: Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có 

AM chung

ˆHAM=ˆKAMHAM^=KAM^

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

d: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có

MB=MC

MH=MK

Do đó: ΔBHM=ΔCKM

18 tháng 2 2018

b, Còn câu b thì có thể cần nhé :

Theo câu a ta có : AH=AK ( tam giác AHM=AKM )

Mà AB=AC ( ABC cân ở A )

=> HB=CK

Xét tam giác BHC và CKB có : 

góc HBC=KCB ( ABC cân ở A )

HB=CK

BC chung 

=> hai tam giác bằng nhau ( cạnh-góc-cạnh )

=> CH=BK.

18 tháng 2 2018

a, Chỉ xảy ra khi đề cho tam giác ABC cân ở A.

Nếu có thì giải như sau : 

Xét tam giác AHM và AKM có : 

\(\widehat{AHM}=\widehat{AKM}=90^o\)

Cạnh huyền AM chung 

\(\widehat{HAM}=\widehat{KAM}\)( Vì AM là tia p/g )

=> Tam giác AHM=AKM ( ch-gn ) => MH=MK

10 tháng 5 2022

mình chỉ giúp ý d theo mong muốn của bạn thôi :)

Có : AH = AK ( cái này bạn chứng minh ở câu  trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )

=> A thuộc đường trung trực của HK

và MH=MK

=> M thuộc đường trung trực của HK

=> AM là đường trung tực của HK

=> AM ⊥ HK

7 tháng 3 2023

giúp mình câu d thôi ạ

 

7 tháng 3 2023

sai đề hay sao ý bn

17 tháng 1 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét hai tam giác vuông AHM và AKM, ta có:

∠(AHM) =∠(AKM) =90o

Cạnh huyền AM chung

∠(HAM) =∠(KAM) (gt)

⇒ ΔAHM= ΔAKM (cạnh huyền, góc nhọn)

Suy ra: MH = MK (hai cạnh tương ứng)

a:

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

b: Xét ΔABC có

AM là đường trung tuyến

AM là đường phân giác

Do đó: ΔABC cân tại A

Suy ra: \(\widehat{B}=\widehat{C}\)

16 tháng 1 2022

cop vừa

13 tháng 12 2021

a. Ta có: AB = AC

\(\Rightarrow\Delta ABC\) cân tại A.

Mà tia phân giác của góc cân đồng thời cắt cạnh đối tại trung điểm của nó.

Vậy: BM = MC.

b. Xét 2\(\Delta\)\(\Delta ABM\) và \(\Delta ACM\) có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\\widehat{BAM}=\widehat{CAM}\left(gt\right)\\AM.chung\end{matrix}\right.\)

\(\Rightarrow\) \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)

Vậy \(\widehat{AMB}=\widehat{AMC}\)

Mà: \(\widehat{BMC}=180^o\)

Vậy: \(\widehat{AMB}=90^o\) hay \(AM\perp BC\)

13 tháng 12 2021

a) Xét tam giác ABM và tam giác ACM, ta có:

AB = AC (gt)

AM: cạnh chung

Góc BAM = góc CAM (do AM là tia phân giác của góc BAC)

=> tam giác ABM = tam giác ACM (c.g.c)

=> BM = MC (2 cạnh tương ứng) (đpcm)

b) Xét tam giác ABC, ta có:

AB = AC (gt)

=> tam giác ABC cân tại A

Mà AM là tia phân giác góc BAC

=> AM cũng là đường cao ứng với BC

=> AM vuông góc BC (đpcm)

 

 

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A

mà AM là đường cao

nên AM là tia phân giác của góc BAC

hay góc BAM= góc CAM

c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

hay ΔMHK cân tại M

d: Xét ΔAHK có AH=AK

nên ΔAHK cân tại A

e: Xét ΔABC có AH/AB=AK/AC

nên HK//BC

Xét tứ giác AHMK có

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

Do đó: AHMK là hình chữ nhật

mà AM là tia phân giác

nên AHMK là hình vuông